Abstract

High-efficiency diffractive optical elements can be achieved by an increase in the number of phase levels. We present a technique for laser direct-write gray-level masks on high-energy-beam–sensitive glass and one-step etching on the gray-level mask plate for the production of high-efficiency diffractive optical elements. Sixteen-phase-level diffractive microlenses and microlens arrays with a focusing efficiency of approximately 94% have been realized by use of the one-step nonphotolithographic fabrication technique.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Jahns, S. H. Lee, Optical Computing Hardware (Academic, Boston, Mass., 1994), p. 332.
  2. A. Salin, “Use of mask making technology in producing high quality, low cost passive optical devices,” in Optical/Laser Microlithography II, B. J. Lin, ed., Proc. SPIE1088, 527–537 (1989).
    [CrossRef]
  3. L. A. Hornak, “Fresnel phase plate lenses for through-wafer optical interconnections,” Appl. Opt. 26, 3649–3654 (1987).
    [CrossRef] [PubMed]
  4. D. W. Ricks, “Scattering from the diffractive optics,” in Photorefractive Materials, Effects, and Applications, Vol. CR49 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1993), pp. 187–211.
  5. W. Daschner, P. Long, R. Stein, C. Wu, S. H. Lee, “Cost-effective mass fabrication of multilevel Gluch diffractive optical elements by use of single optical exposure with a gray-scale mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
    [CrossRef]
  6. W. Däschner, M. Larsson, S. H. Lee, “Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step,” Appl. Opt. 34, 2534–2539 (1995).
    [CrossRef] [PubMed]
  7. M. T. Gale, G. K. Lang, J. M. Raynor, H. Schutz, D. Prongue, “Fabrication of kinoform structures for optical computing,” Appl. Opt. 31, 5712–5715 (1992).
    [CrossRef] [PubMed]
  8. M. R. Wang, H. Su, “Multilevel diffractive microlens fabrication using one-step laser-assisted chemical etching on high-energy-beam sensitive glass,” Opt. Lett. 23, 876–878 (1998).
    [CrossRef]
  9. E. J. Gratrix, C. B. Zarowin, “Fabrication of microlenses by laser assisted chemical etching (LACE),” in Miniature and Micro-Optics: Fabrication and System Application, C. S. Roychoudhuri, W. B. Veldkemp, eds., Proc. SPIE1544, 238–243 (1991).
    [CrossRef]
  10. D. Bauerle, Chemical Processing with Lasers (Springer-Verlag, Berlin, 1986), p. 245.
  11. I. W. Boyd, Laser Processing Thin Films and Microstructures (Springer-Verlag, Berlin, 1987), p. 320.
  12. J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
    [CrossRef] [PubMed]
  13. T. J. Suleski, D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995).
    [CrossRef] [PubMed]
  14. D. C. O’Shea, W. S. Rockward, “Gray-scale masks for diffractive-optics fabrication: II. Spatially filtered halftone screens,” Appl. Opt. 34, 7518–7526 (1995).
    [CrossRef] [PubMed]
  15. X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation,” Appl. Opt. 36, 4660–4665 (1997).
    [CrossRef] [PubMed]
  16. M. Kuittinen, H. P. Herzig, P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120, 230–234 (1995).
    [CrossRef]
  17. H. Su, M. R. Wang, “Laser direct-write optical grating lenses and lenslet arrays on glass for optical interconnect applications,” in Integrated Optoelectronics, R. T. Chen, W.-T. Tsang, B. Zhou, eds., Proc. SPIE2891, 82–87 (1996).
    [CrossRef]
  18. X. G. Huang, M. R. Wang, Y. Tsui, C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83, 3795–3799 (1998).
    [CrossRef]
  19. C. K. Wu, “High energy beam sensitive glasses,” U.S. patent5,285,517 (8February1994).

1998

M. R. Wang, H. Su, “Multilevel diffractive microlens fabrication using one-step laser-assisted chemical etching on high-energy-beam sensitive glass,” Opt. Lett. 23, 876–878 (1998).
[CrossRef]

X. G. Huang, M. R. Wang, Y. Tsui, C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83, 3795–3799 (1998).
[CrossRef]

1997

1995

1992

1990

1987

Bauerle, D.

D. Bauerle, Chemical Processing with Lasers (Springer-Verlag, Berlin, 1986), p. 245.

Boyd, I. W.

I. W. Boyd, Laser Processing Thin Films and Microstructures (Springer-Verlag, Berlin, 1987), p. 320.

Daschner, W.

Däschner, W.

Ehbets, P.

M. Kuittinen, H. P. Herzig, P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120, 230–234 (1995).
[CrossRef]

Gale, M. T.

Gratrix, E. J.

E. J. Gratrix, C. B. Zarowin, “Fabrication of microlenses by laser assisted chemical etching (LACE),” in Miniature and Micro-Optics: Fabrication and System Application, C. S. Roychoudhuri, W. B. Veldkemp, eds., Proc. SPIE1544, 238–243 (1991).
[CrossRef]

Herzig, H. P.

M. Kuittinen, H. P. Herzig, P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120, 230–234 (1995).
[CrossRef]

Hornak, L. A.

Huang, X. G.

X. G. Huang, M. R. Wang, Y. Tsui, C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83, 3795–3799 (1998).
[CrossRef]

Jahns, J.

Kuittinen, M.

M. Kuittinen, H. P. Herzig, P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120, 230–234 (1995).
[CrossRef]

Lang, G. K.

Larsson, M.

Lee, S. H.

Leger, J. R.

Long, P.

O’Shea, D. C.

Prongue, D.

Raynor, J. M.

Rediker, R. H.

Ricks, D. W.

D. W. Ricks, “Scattering from the diffractive optics,” in Photorefractive Materials, Effects, and Applications, Vol. CR49 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1993), pp. 187–211.

Rockward, W. S.

Salin, A.

A. Salin, “Use of mask making technology in producing high quality, low cost passive optical devices,” in Optical/Laser Microlithography II, B. J. Lin, ed., Proc. SPIE1088, 527–537 (1989).
[CrossRef]

Schutz, H.

Stein, R.

Su, H.

M. R. Wang, H. Su, “Multilevel diffractive microlens fabrication using one-step laser-assisted chemical etching on high-energy-beam sensitive glass,” Opt. Lett. 23, 876–878 (1998).
[CrossRef]

H. Su, M. R. Wang, “Laser direct-write optical grating lenses and lenslet arrays on glass for optical interconnect applications,” in Integrated Optoelectronics, R. T. Chen, W.-T. Tsang, B. Zhou, eds., Proc. SPIE2891, 82–87 (1996).
[CrossRef]

Suleski, T. J.

Tsui, Y.

X. G. Huang, M. R. Wang, Y. Tsui, C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83, 3795–3799 (1998).
[CrossRef]

Walker, S. J.

Wang, M. R.

M. R. Wang, H. Su, “Multilevel diffractive microlens fabrication using one-step laser-assisted chemical etching on high-energy-beam sensitive glass,” Opt. Lett. 23, 876–878 (1998).
[CrossRef]

X. G. Huang, M. R. Wang, Y. Tsui, C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83, 3795–3799 (1998).
[CrossRef]

H. Su, M. R. Wang, “Laser direct-write optical grating lenses and lenslet arrays on glass for optical interconnect applications,” in Integrated Optoelectronics, R. T. Chen, W.-T. Tsang, B. Zhou, eds., Proc. SPIE2891, 82–87 (1996).
[CrossRef]

Wang, X.

Wu, C.

Wu, C. K.

C. K. Wu, “High energy beam sensitive glasses,” U.S. patent5,285,517 (8February1994).

Zarowin, C. B.

E. J. Gratrix, C. B. Zarowin, “Fabrication of microlenses by laser assisted chemical etching (LACE),” in Miniature and Micro-Optics: Fabrication and System Application, C. S. Roychoudhuri, W. B. Veldkemp, eds., Proc. SPIE1544, 238–243 (1991).
[CrossRef]

Appl. Opt.

L. A. Hornak, “Fresnel phase plate lenses for through-wafer optical interconnections,” Appl. Opt. 26, 3649–3654 (1987).
[CrossRef] [PubMed]

W. Daschner, P. Long, R. Stein, C. Wu, S. H. Lee, “Cost-effective mass fabrication of multilevel Gluch diffractive optical elements by use of single optical exposure with a gray-scale mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
[CrossRef]

W. Däschner, M. Larsson, S. H. Lee, “Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step,” Appl. Opt. 34, 2534–2539 (1995).
[CrossRef] [PubMed]

M. T. Gale, G. K. Lang, J. M. Raynor, H. Schutz, D. Prongue, “Fabrication of kinoform structures for optical computing,” Appl. Opt. 31, 5712–5715 (1992).
[CrossRef] [PubMed]

J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
[CrossRef] [PubMed]

T. J. Suleski, D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995).
[CrossRef] [PubMed]

D. C. O’Shea, W. S. Rockward, “Gray-scale masks for diffractive-optics fabrication: II. Spatially filtered halftone screens,” Appl. Opt. 34, 7518–7526 (1995).
[CrossRef] [PubMed]

X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation,” Appl. Opt. 36, 4660–4665 (1997).
[CrossRef] [PubMed]

J. Appl. Phys.

X. G. Huang, M. R. Wang, Y. Tsui, C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83, 3795–3799 (1998).
[CrossRef]

Opt. Commun.

M. Kuittinen, H. P. Herzig, P. Ehbets, “Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures,” Opt. Commun. 120, 230–234 (1995).
[CrossRef]

Opt. Lett.

Other

E. J. Gratrix, C. B. Zarowin, “Fabrication of microlenses by laser assisted chemical etching (LACE),” in Miniature and Micro-Optics: Fabrication and System Application, C. S. Roychoudhuri, W. B. Veldkemp, eds., Proc. SPIE1544, 238–243 (1991).
[CrossRef]

D. Bauerle, Chemical Processing with Lasers (Springer-Verlag, Berlin, 1986), p. 245.

I. W. Boyd, Laser Processing Thin Films and Microstructures (Springer-Verlag, Berlin, 1987), p. 320.

D. W. Ricks, “Scattering from the diffractive optics,” in Photorefractive Materials, Effects, and Applications, Vol. CR49 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1993), pp. 187–211.

J. Jahns, S. H. Lee, Optical Computing Hardware (Academic, Boston, Mass., 1994), p. 332.

A. Salin, “Use of mask making technology in producing high quality, low cost passive optical devices,” in Optical/Laser Microlithography II, B. J. Lin, ed., Proc. SPIE1088, 527–537 (1989).
[CrossRef]

H. Su, M. R. Wang, “Laser direct-write optical grating lenses and lenslet arrays on glass for optical interconnect applications,” in Integrated Optoelectronics, R. T. Chen, W.-T. Tsang, B. Zhou, eds., Proc. SPIE2891, 82–87 (1996).
[CrossRef]

C. K. Wu, “High energy beam sensitive glasses,” U.S. patent5,285,517 (8February1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Conventional binary multimask-and-etch fabrication and (b) gray-level mask-based one-step fabrication for DOE’s.

Fig. 2
Fig. 2

Our one-step etching fabrication process on a laser direct-write gray-level glass mask plate that eliminates the photolithographic processing step.

Fig. 3
Fig. 3

Transmittance as a function of the heating time under different constant temperatures T.

Fig. 4
Fig. 4

Transmittance-saturation property with focused laser beam exposure at 190 °C. P is the focused laser-writing beam power. The focal-spot size is 50 μm.

Fig. 5
Fig. 5

Transmittance-saturation property with a focused laser beam exposure at 20 °C with a 0.8-μm focused spot size. P is the focused laser-writing beam power.

Fig. 6
Fig. 6

Nonsaturation written transmittance as a function of the focused laser-writing power at a constant writing speed of 30 μm/s and a writing spot size of 0.8 μm.

Fig. 7
Fig. 7

Microphotograph and measured transmittance curve of laser-written transmittance steps showing the capability of writing wide and narrow flat transmittances with sharp step-to-step boundaries.

Fig. 8
Fig. 8

(a) Laser-written 16-level gray-level transmittance region for etching calibration. (b) Microphotograph of the etched sample showing 16 steps. The stripe width of each gray level is 15 μm.

Fig. 9
Fig. 9

Schematic for the etch-depth definition.

Fig. 10
Fig. 10

Relation between the etch depth and the regional transmission at 640 nm after 29-min etching in 3.3% dilute hydrofluoric acid at room temperature.

Fig. 11
Fig. 11

Sixteen-level diffractive microlens fabrication result: (a) a laser direct-write gray-level lens mask and (b) a microphotograph of the etched multiphase-level microlens structure.

Fig. 12
Fig. 12

Optical intensity distribution of the focal spot.

Fig. 13
Fig. 13

Microphotograph of the diffractive microlens array.

Fig. 14
Fig. 14

Optical intensity distribution of the focal plane of the 3 × 3 diffractive microlens array. Good intensity uniformity of the focused spot array is observed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g r = k = 0 N L - 1 exp - 2 π ki L rect 2 r 2 L - 2 kr p 2 - r p 2 2 r p 2 ,
w n , l = n + l + 1 L 1 / 2 - n + l L 1 / 2 r p ,

Metrics