Abstract

A pixelated holographic stereogram is proposed and experimentally studied for the emulation of a spatially multiplexed composite three-dimensional (3-D) pixel display. With this approach, pixelated holograms are utilized to compose spatially multiplexed images. Each composite pixel in the holographic optical element array has a diffraction pattern that scatters light into predefined spatial directions. Under reconstruction, each pixel generates different intensities along a range of viewing angles. When the composite holographic pixel array is assembled, it has the capability to deliver 3-D effects. The technique, together with a novel recording scheme that is designed to synthesize a computerized 3-D display system based on this concept, is described in some detail.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iizuka, Engineering Optics (Springer-Verlag, Heidelberg, 1985).
    [CrossRef]
  2. T. Takeda, Y. Fukui, K. Hashimoto, N. Hiruma, “Three-dimensional visual stimulator,” Appl. Opt. 34, 732–738 (1995).
    [CrossRef] [PubMed]
  3. K. R. Boff, L. Kaufman, J. P. Thomas, Handbook of Perception and Human Performance (Wiley, New York, 1986).
  4. A. R. Travis, “Autostereoscopic 3-D display,” Appl. Opt. 29, 4341–4343 (1990).
    [CrossRef] [PubMed]
  5. N. A. Dodgson, “Analysis of the viewing zone of the Cambridge autostereoscopic display,” Appl. Opt. 35, 1705–1710 (1996).
    [CrossRef] [PubMed]
  6. I. Khoo, “Holographic grating formation in dye- or fullerene-C60-doped liquid crystal film,” Opt. Photon. News 6(12), 29 (1995).
    [CrossRef]
  7. K. Meerholz, “A photorefractive polymer with high gain and diffraction near 100%,” Nature 371, 497 (1994).
    [CrossRef]
  8. J. C. Palais, M. E. Miller, “Holographic movies,” Opt. Eng. 35, 2578–2582 (1996).
    [CrossRef]
  9. K. E. Jachimowicz, R. S. Gold, “Stereoscopic 3D projection display using polarized color multiplexing,” Opt. Eng. 29, 838–842 (1990).
    [CrossRef]
  10. P. St. Hilaire, S. A. Benton, M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. A 9, 1969–1977 (1992).
    [CrossRef]
  11. J. H. Kulick, G. P. Nordin, A. Parker, S. T. Kowel, R. G. Lindquist, M. Jones, P. Nasiatka, “Partial pixels: a three-dimensional diffractive display architecture,” J. Opt. Soc. Am. A 12, 73–83 (1995).
    [CrossRef]
  12. D. L. MacFarlane, “Volumetric three-dimensional display,” Appl. Opt. 33, 7453–7457 (1994).
    [CrossRef] [PubMed]
  13. T. Takeda, Y. Fukui, K. Hashimoto, N. Hiruma, “Three-dimensional visual stimulator,” Appl. Opt. 34, 732–738 (1995).
    [CrossRef] [PubMed]
  14. T.-C. Poon, K. B. Doh, B. Schilling, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
    [CrossRef]
  15. S.-T. Chen, M. R. Chatterjee, “Computer generated, spatially multiplexed message display using a holographic optical element array,” paper presented at the OSA Annual Meeting, Portland, Oregon, 10–15 September 1995 (Optical Society of America, Washington, D.C.), p. 150.
  16. M. C. King, “Multiple exposure hologram recording of a 3-D image with a 360° view (L),” Appl. Opt. 7, 1641–1642 (1968).
    [CrossRef] [PubMed]
  17. M. C. King, A. M. Noll, D. H. Berry, “A new approach to computer generated holography,” Appl. Opt. 9, 471–475 (1969).
    [CrossRef]
  18. S. A. Benton, “Holgraphic displays: 1975–1980,” Opt. Eng. 19, 686–690 (1980).
  19. W. Spierings, E. van Nuland, “Development of an office holoprinter II,” in Practical Holography VI, S. A. Benton, ed., Proc. SPIE1667, 52–62 (1992).
    [CrossRef]
  20. L. P. Yaroslavski, N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980).

1997 (1)

T.-C. Poon, K. B. Doh, B. Schilling, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

1996 (2)

1995 (4)

1994 (2)

K. Meerholz, “A photorefractive polymer with high gain and diffraction near 100%,” Nature 371, 497 (1994).
[CrossRef]

D. L. MacFarlane, “Volumetric three-dimensional display,” Appl. Opt. 33, 7453–7457 (1994).
[CrossRef] [PubMed]

1992 (1)

1990 (2)

K. E. Jachimowicz, R. S. Gold, “Stereoscopic 3D projection display using polarized color multiplexing,” Opt. Eng. 29, 838–842 (1990).
[CrossRef]

A. R. Travis, “Autostereoscopic 3-D display,” Appl. Opt. 29, 4341–4343 (1990).
[CrossRef] [PubMed]

1980 (1)

S. A. Benton, “Holgraphic displays: 1975–1980,” Opt. Eng. 19, 686–690 (1980).

1969 (1)

1968 (1)

Benton, S. A.

Berry, D. H.

Boff, K. R.

K. R. Boff, L. Kaufman, J. P. Thomas, Handbook of Perception and Human Performance (Wiley, New York, 1986).

Chatterjee, M. R.

S.-T. Chen, M. R. Chatterjee, “Computer generated, spatially multiplexed message display using a holographic optical element array,” paper presented at the OSA Annual Meeting, Portland, Oregon, 10–15 September 1995 (Optical Society of America, Washington, D.C.), p. 150.

Chen, S.-T.

S.-T. Chen, M. R. Chatterjee, “Computer generated, spatially multiplexed message display using a holographic optical element array,” paper presented at the OSA Annual Meeting, Portland, Oregon, 10–15 September 1995 (Optical Society of America, Washington, D.C.), p. 150.

Dodgson, N. A.

Doh, K. B.

T.-C. Poon, K. B. Doh, B. Schilling, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Fukui, Y.

Gold, R. S.

K. E. Jachimowicz, R. S. Gold, “Stereoscopic 3D projection display using polarized color multiplexing,” Opt. Eng. 29, 838–842 (1990).
[CrossRef]

Hashimoto, K.

Hiruma, N.

Iizuka, K.

K. Iizuka, Engineering Optics (Springer-Verlag, Heidelberg, 1985).
[CrossRef]

Jachimowicz, K. E.

K. E. Jachimowicz, R. S. Gold, “Stereoscopic 3D projection display using polarized color multiplexing,” Opt. Eng. 29, 838–842 (1990).
[CrossRef]

Jones, M.

Kaufman, L.

K. R. Boff, L. Kaufman, J. P. Thomas, Handbook of Perception and Human Performance (Wiley, New York, 1986).

Khoo, I.

I. Khoo, “Holographic grating formation in dye- or fullerene-C60-doped liquid crystal film,” Opt. Photon. News 6(12), 29 (1995).
[CrossRef]

King, M. C.

Kowel, S. T.

Kulick, J. H.

Lindquist, R. G.

Lucente, M.

MacFarlane, D. L.

Meerholz, K.

K. Meerholz, “A photorefractive polymer with high gain and diffraction near 100%,” Nature 371, 497 (1994).
[CrossRef]

Merzlyakov, N. S.

L. P. Yaroslavski, N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980).

Miller, M. E.

J. C. Palais, M. E. Miller, “Holographic movies,” Opt. Eng. 35, 2578–2582 (1996).
[CrossRef]

Nasiatka, P.

Noll, A. M.

Nordin, G. P.

Palais, J. C.

J. C. Palais, M. E. Miller, “Holographic movies,” Opt. Eng. 35, 2578–2582 (1996).
[CrossRef]

Parker, A.

Poon, T.-C.

T.-C. Poon, K. B. Doh, B. Schilling, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Schilling, B.

T.-C. Poon, K. B. Doh, B. Schilling, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Spierings, W.

W. Spierings, E. van Nuland, “Development of an office holoprinter II,” in Practical Holography VI, S. A. Benton, ed., Proc. SPIE1667, 52–62 (1992).
[CrossRef]

St. Hilaire, P.

Suzuki, Y.

T.-C. Poon, K. B. Doh, B. Schilling, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Takeda, T.

Thomas, J. P.

K. R. Boff, L. Kaufman, J. P. Thomas, Handbook of Perception and Human Performance (Wiley, New York, 1986).

Travis, A. R.

van Nuland, E.

W. Spierings, E. van Nuland, “Development of an office holoprinter II,” in Practical Holography VI, S. A. Benton, ed., Proc. SPIE1667, 52–62 (1992).
[CrossRef]

Wu, M. H.

T.-C. Poon, K. B. Doh, B. Schilling, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Yaroslavski, L. P.

L. P. Yaroslavski, N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980).

Appl. Opt. (7)

J. Opt. Soc. Am. A (2)

Nature (1)

K. Meerholz, “A photorefractive polymer with high gain and diffraction near 100%,” Nature 371, 497 (1994).
[CrossRef]

Opt. Eng. (3)

J. C. Palais, M. E. Miller, “Holographic movies,” Opt. Eng. 35, 2578–2582 (1996).
[CrossRef]

K. E. Jachimowicz, R. S. Gold, “Stereoscopic 3D projection display using polarized color multiplexing,” Opt. Eng. 29, 838–842 (1990).
[CrossRef]

S. A. Benton, “Holgraphic displays: 1975–1980,” Opt. Eng. 19, 686–690 (1980).

Opt. Photon. News (1)

I. Khoo, “Holographic grating formation in dye- or fullerene-C60-doped liquid crystal film,” Opt. Photon. News 6(12), 29 (1995).
[CrossRef]

Opt. Rev. (1)

T.-C. Poon, K. B. Doh, B. Schilling, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Other (5)

S.-T. Chen, M. R. Chatterjee, “Computer generated, spatially multiplexed message display using a holographic optical element array,” paper presented at the OSA Annual Meeting, Portland, Oregon, 10–15 September 1995 (Optical Society of America, Washington, D.C.), p. 150.

W. Spierings, E. van Nuland, “Development of an office holoprinter II,” in Practical Holography VI, S. A. Benton, ed., Proc. SPIE1667, 52–62 (1992).
[CrossRef]

L. P. Yaroslavski, N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980).

K. Iizuka, Engineering Optics (Springer-Verlag, Heidelberg, 1985).
[CrossRef]

K. R. Boff, L. Kaufman, J. P. Thomas, Handbook of Perception and Human Performance (Wiley, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

A spatially multiplexed display (stereogram) projects two patterns in different directions.

Fig. 2
Fig. 2

Recording of a holographic stereogram (top view) in which the film is recorded slit by slit (after Iizuka1).

Fig. 3
Fig. 3

POP technique used to make a hologram with properties similar to those seen when one looks into a small opening in front of a large object at close range.

Fig. 4
Fig. 4

Images on the projection screen and views in the observation plane seen through a small opening in the mask.

Fig. 5
Fig. 5

Recording scheme for a horizontally multiplexed POP. The object beam consists of nine object segments.

Fig. 6
Fig. 6

Reconstruction of information recorded on a holographic pixel.

Fig. 7
Fig. 7

HOE array used for diffracting the reference light beam along different directions.

Fig. 8
Fig. 8

Two images projected by the HOE array along two directions. The individual diffraction patterns of each element are shown on the right-hand side.

Fig. 9
Fig. 9

Individual diffraction patterns and projection-screen configurations for recording. The (common) reference beam is not shown.

Fig. 10
Fig. 10

Spatial-division misalignments from two pixels with uniform angular multiplexing during reconstruction.

Fig. 11
Fig. 11

Perfectly aligned diffraction of pixels at the observation plane, where d is the (maximum) distance of the leftmost and the rightmost pixels.

Fig. 12
Fig. 12

Schematic setup for recording the HOE array. The electronic shutter, the LCD, and the 2-D dynamic carriage are controlled by a computer. The attenuators A1 and A2 are used to control the beam-intensity ratio for recording.

Fig. 13
Fig. 13

Recording geometry for the rightmost pixel n.

Fig. 14
Fig. 14

Recording geometry for the ith pixel located at x. Within the range RL, the LCD displays the pattern to be reconstructed later during replay.

Fig. 15
Fig. 15

Replay setup for holographic stereograms. The film is placed on a film holder. The stereographic images are observed from a finite viewing distance over the predefined angular range.

Fig. 16
Fig. 16

Four of 20 horizontally multiplexed images viewed from different perspectives.

Fig. 17
Fig. 17

Multiplexed scenes from a horizontally and vertically multiplexed holographic stereogram.

Fig. 18
Fig. 18

Recording with a variable gray level (right-hand side) and without (left-hand side).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w d = l LCD l FO l IF - d .
θ R x = π - tan - 1 w d 2 - x / l FO ,
θ L x = tan - 1 w d 2 + x / l FO ,
n R x = N 2 + N   l IF l LCD cot   θ R x ,
n L x = l IF cot   θ R x + cot   θ L x l LCD N + n R x ,

Metrics