Abstract

Thin ferroelectric interferometers (TFI’s) for use as light-modulating devices were fabricated entirely with thin-film techniques on sapphire substrates. The ferroelectric layer in the TFI devices was a lead lanthanum zirconated titanate thin-film material, which can be formed from a chemical solution on highly reflective dielectric mirror surfaces. Light intensity modulation in both transmission and reflection modes was demonstrated with the fabricated devices. Experimental data and simulations show that TFI devices possess tremendous potential in spatial light modulators because of their fast-switching, low-driving voltage and readiness for integration with a variety of substrates, including silicon.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription