S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).

[CrossRef]
[PubMed]

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

[CrossRef]

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 372–386 (1993).

[CrossRef]

S. R. Arridge, W. R. B. Lionheart, “Non-uniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).

[CrossRef]

S. R. Arridge, M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998); http://epubs.osa.org/oearchive/source/4014.htm .

[CrossRef]

M. Schweiger, S. R. Arridge, “Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue,” Appl. Opt. 36, 9042–9049 (1997).

[CrossRef]

M. Schweiger, S. R. Arridge, “The finite element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895–902 (1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, “Photon measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, M. Firbank, D. T. Delpy, “Comparison of a finite element forward model with experimental phantom results: application to image reconstruction,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 179–190 (1993).

[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).

[CrossRef]

S. R. Arridge, M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scattering tomography (TOAST),” in Mathematical Methods in Medical Imaging II, J. N. Wilson, D. C. Wilson, eds., Proc. SPIE2035, 218–229 (1993).

[CrossRef]

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging (IPMI’97 Proceedings), Vol. 1230 of Lecture Notes in Computer Science (Springer, New York, 1997), pp. 71–84.

[CrossRef]

S. R. Arridge, M. Schweiger, “A general framework for iterative reconstruction algorithms in optical tomography, using a finite element method,” in Computational Radiology and Imaging: Therapy and Diagnosis, C. Borgers, F. Natterer, eds., Vol. 110 of IMA Volumes in Mathematics and Its Applications (Springer-Verlag, New York, 1998), in press.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 372–386 (1993).

[CrossRef]

S. A. Walker, D. A. Boas, E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt. 37, 1935–1944 (1998).

[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, R. J. Nossal, R. F. Bonner, “Theoretical study of resolution limits for time-resolved imaging of human breast,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 176–185 (1994).

[CrossRef]

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

[CrossRef]

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 372–386 (1993).

[CrossRef]

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).

[CrossRef]
[PubMed]

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).

[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

[PubMed]

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).

[CrossRef]
[PubMed]

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

[CrossRef]

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).

[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

[PubMed]

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, M. Firbank, D. T. Delpy, “Comparison of a finite element forward model with experimental phantom results: application to image reconstruction,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 179–190 (1993).

[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

[PubMed]

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).

[CrossRef]
[PubMed]

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).

[CrossRef]

S. A. Walker, S. Fantini, E. Gratton, “Back-projection reconstructions of cylindrical inhomogeneities from frequency domain optical measurements in turbid media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 137–141.

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, M. Firbank, D. T. Delpy, “Comparison of a finite element forward model with experimental phantom results: application to image reconstruction,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 179–190 (1993).

[CrossRef]

U. Hampel, R. Freyer, “Fast image reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, R. J. Nossal, R. F. Bonner, “Theoretical study of resolution limits for time-resolved imaging of human breast,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 176–185 (1994).

[CrossRef]

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 372–386 (1993).

[CrossRef]

S. A. Walker, D. A. Boas, E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt. 37, 1935–1944 (1998).

[CrossRef]

S. A. Walker, S. Fantini, E. Gratton, “Back-projection reconstructions of cylindrical inhomogeneities from frequency domain optical measurements in turbid media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 137–141.

C. Greenough, K. Robinson, Finite Element Libarary (Numerical Algorithms Group, Rutherford Appelton Laboratory, Chilton, Oxfordshire, UK, 1981).

U. Hampel, R. Freyer, “Fast image reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).

[CrossRef]
[PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time of flight imaging system,” Med. Phys. 17, 351–356 (1990).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, M. Firbank, D. T. Delpy, “Comparison of a finite element forward model with experimental phantom results: application to image reconstruction,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 179–190 (1993).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1999).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Österberg, M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).

[CrossRef]
[PubMed]

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time of flight imaging system,” Med. Phys. 17, 351–356 (1990).

[CrossRef]
[PubMed]

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

[CrossRef]

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

[CrossRef]

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 372–386 (1993).

[CrossRef]

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, R. J. Nossal, R. F. Bonner, “Theoretical study of resolution limits for time-resolved imaging of human breast,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 176–185 (1994).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Österberg, M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).

[CrossRef]
[PubMed]

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).

[CrossRef]
[PubMed]

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Österberg, M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1999).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Österberg, M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).

[CrossRef]
[PubMed]

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

[PubMed]

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).

[CrossRef]
[PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

[PubMed]

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).

[CrossRef]
[PubMed]

C. Greenough, K. Robinson, Finite Element Libarary (Numerical Algorithms Group, Rutherford Appelton Laboratory, Chilton, Oxfordshire, UK, 1981).

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).

[CrossRef]

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998); http://epubs.osa.org/oearchive/source/4014.htm .

[CrossRef]

M. Schweiger, S. R. Arridge, “Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue,” Appl. Opt. 36, 9042–9049 (1997).

[CrossRef]

M. Schweiger, S. R. Arridge, “The finite element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895–902 (1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).

[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, M. Firbank, D. T. Delpy, “Comparison of a finite element forward model with experimental phantom results: application to image reconstruction,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 179–190 (1993).

[CrossRef]

S. R. Arridge, M. Schweiger, “A general framework for iterative reconstruction algorithms in optical tomography, using a finite element method,” in Computational Radiology and Imaging: Therapy and Diagnosis, C. Borgers, F. Natterer, eds., Vol. 110 of IMA Volumes in Mathematics and Its Applications (Springer-Verlag, New York, 1998), in press.

S. R. Arridge, M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scattering tomography (TOAST),” in Mathematical Methods in Medical Imaging II, J. N. Wilson, D. C. Wilson, eds., Proc. SPIE2035, 218–229 (1993).

[CrossRef]

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging (IPMI’97 Proceedings), Vol. 1230 of Lecture Notes in Computer Science (Springer, New York, 1997), pp. 71–84.

[CrossRef]

M. Tamura, “Multichannel near-infrared optical imaging of human brain activity,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 8–10.

O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1987).

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).

[CrossRef]
[PubMed]

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).

[CrossRef]
[PubMed]

S. A. Walker, D. A. Boas, E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt. 37, 1935–1944 (1998).

[CrossRef]

S. A. Walker, S. Fantini, E. Gratton, “Back-projection reconstructions of cylindrical inhomogeneities from frequency domain optical measurements in turbid media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 137–141.

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

[PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

[PubMed]

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).

[CrossRef]
[PubMed]

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

[CrossRef]

O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1987).

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).

[CrossRef]
[PubMed]

S. A. Walker, D. A. Boas, E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt. 37, 1935–1944 (1998).

[CrossRef]

C. L. Matson, N. Clark, L. McMackin, J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36, 214–220 (1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, “Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue,” Appl. Opt. 36, 9042–9049 (1997).

[CrossRef]

M. Keijzer, W. M. Star, P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988).

[CrossRef]
[PubMed]

S. R. Arridge, “Photon measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).

[CrossRef]
[PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

[PubMed]

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).

[CrossRef]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).

[CrossRef]

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, “The finite element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895–902 (1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Österberg, M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).

[CrossRef]
[PubMed]

U. Hampel, R. Freyer, “Fast image reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).

[CrossRef]
[PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time of flight imaging system,” Med. Phys. 17, 351–356 (1990).

[CrossRef]
[PubMed]

S. R. Arridge, W. R. B. Lionheart, “Non-uniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).

[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, “A general framework for iterative reconstruction algorithms in optical tomography, using a finite element method,” in Computational Radiology and Imaging: Therapy and Diagnosis, C. Borgers, F. Natterer, eds., Vol. 110 of IMA Volumes in Mathematics and Its Applications (Springer-Verlag, New York, 1998), in press.

S. R. Arridge, M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scattering tomography (TOAST),” in Mathematical Methods in Medical Imaging II, J. N. Wilson, D. C. Wilson, eds., Proc. SPIE2035, 218–229 (1993).

[CrossRef]

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging (IPMI’97 Proceedings), Vol. 1230 of Lecture Notes in Computer Science (Springer, New York, 1997), pp. 71–84.

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, M. Firbank, D. T. Delpy, “Comparison of a finite element forward model with experimental phantom results: application to image reconstruction,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 179–190 (1993).

[CrossRef]

C. Greenough, K. Robinson, Finite Element Libarary (Numerical Algorithms Group, Rutherford Appelton Laboratory, Chilton, Oxfordshire, UK, 1981).

O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1987).

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 372–386 (1993).

[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).

[CrossRef]

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

[CrossRef]

S. A. Walker, S. Fantini, E. Gratton, “Back-projection reconstructions of cylindrical inhomogeneities from frequency domain optical measurements in turbid media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 137–141.

A. H. Gandjbakhche, R. J. Nossal, R. F. Bonner, “Theoretical study of resolution limits for time-resolved imaging of human breast,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 176–185 (1994).

[CrossRef]

M. Tamura, “Multichannel near-infrared optical imaging of human brain activity,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 8–10.