Abstract

Tin oxide thin films were deposited by reactive radio-frequency magnetron sputtering onto In2O3:Sn-coated and bare glass substrates. Optical constants in the 300–2500-nm wavelength range were determined by a combination of variable-angle spectroscopic ellipsometry and spectrophotometric transmittance measurements. Surface roughness was modeled from optical measurements and compared with atomic-force microscopy. The two techniques gave consistent results. The fit between experimental optical data and model results could be significantly improved when it was assumed that the refractive index of the Sn oxide varied across the film thickness. Varying the oxygen partial pressure during deposition made it possible to obtain films whose complex refractive index changed at the transition from SnO to SnO2. An addition of hydrogen gas during sputtering led to lower optical constants in the full spectral range in connection with a blueshift of the bandgap. Electrochemical intercalation of lithium ions into the Sn oxide films raised their refractive index and enhanced their refractive-index gradient.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
    [CrossRef]
  2. I. Hamberg, J. S. E. M. Svensson, T. S. Eriksson, C. G. Granqvist, P. Arrenius, F. Norin, “Radiative cooling and frost formation on surfaces with different thermal emittance: theoretical analysis and practical experience,” Appl. Opt. 26, 2131–2136 (1987).
    [CrossRef] [PubMed]
  3. C. G. Granqvist, Handbook of Inorganic Electrochromic Oxides (Elsevier, Amsterdam, 1995).
  4. V. Lantto, “Semiconductor gas sensors based on SnO2 thick films,” in Gas Sensors, G. Sberveglieri, ed. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 117–167.
    [CrossRef]
  5. W. Göpel, K. D. Schierbaum, “SnO2 sensors: current status and future prospects,” Sensors Actuators B 26–27, 1–12 (1995).
  6. T. Brousse, R. Retoux, U. Herterich, D. M. Schleich, “Thin-film crystalline SnO2-lithium electrodes,” J. Electrochem. Soc. 145, 1–4 (1998).
    [CrossRef]
  7. I. A. Courtney, J. R. Dahn, “Electrochemical and in-situ x-ray diffraction studies of the reaction of lithium with tin oxide composites,” J. Electrochem. Soc. 144, 2045–2052 (1997).
    [CrossRef]
  8. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science 276, 1395–1397 (1997).
    [CrossRef]
  9. P. Olivi, E. C. Pereira, E. Longo, J. A. Varella, L. O. de S. Bulhoes, “Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic devices,” J. Electrochem. Soc. 140, L81–L82 (1993).
  10. B. Orel, U. Lavrencic-Stangar, K. Kalcher, “Electrochemical and structural properties of SnO2 and SnO2:Sb transparent electrodes with mixed electronically conductive and ion-storage characteristics,” J. Electrochem. Soc. 141, L127–L130 (1994).
    [CrossRef]
  11. U. Opara Krasovec, B. Orel, S. Hocevar, I. Musevic, “Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion storage capacity,” J. Electrochem. Soc. 144, 3398–3409 (1997).
    [CrossRef]
  12. J. Isidorsson, C. G. Granqvist, “Electrochromism of Li-intercalated Sn oxide films made by sputtering,” Solar Energy Mater. Solar Cells 44, 375–381 (1996).
    [CrossRef]
  13. J. Isidorsson, C. G. Granqvist, L. Häggström, E. Nordström, “Electrochromism in lithiated Sn oxide: Mössbauer spectroscopy data on valence state changes,” J. Appl. Phys. 80, 2367–2371 (1996).
    [CrossRef]
  14. K. von Rottkay, M. Rubin, “Optical indices of pyrolitic tin-oxide glass,” in Polycrystalline Thin Films: Structure, Texture, Properties and Applications II, H. J. Frost, M. A. Parker, C. A. Ross, E. A. Holm, eds., Mater. Res. Soc. Symp. Proc.426, 449–454 (1996).
    [CrossRef]
  15. F. K. Urban, P. Ruthakowski Athey, M. D. Islam, “Modeling of surface roughness in variable-angle spectroscopic ellipsometry using numerical processing of atomic force microscopy images,” Thin Solid Films 253, 326–332 (1994).
  16. P. Ruzakowski Athey, F. K. Urban, P. H. Holloway, “Use of multiple analytical techniques to confirm improved optical modelling of SnO2:F films by atomic force microscopy and spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 14, 3436–3444 (1996).
    [CrossRef]
  17. A. Roos, “Optical properties of pyrolytic tin oxide on aluminum,” Thin Solid Films 203, 41–48 (1991).
    [CrossRef]
  18. F. Caccavale, R. Coppola, A. Menelle, M. Montecchi, P. Polato, G. Principi, “Characterization of SnOx on architectural glass by neutron reflectometry, SIMS, CEMS and spectrophotometry,” J. Non-Cryst. Solids 218, 291–295 (1997).
    [CrossRef]
  19. R. J. Martin-Palma, J. M. Martinez-Duart, “Accurate determination of the optical constants of sputter-deposited Ag and SnO2 for low emissivity coatings,” J. Vac. Sci. Technol. A 16, 409–412 (1998).
    [CrossRef]
  20. G. Lévêque, Y. Villachon-Renard, “Determination of optical constants of thin film from reflectance spectra,” Appl. Opt. 29, 3207–3212 (1990).
    [CrossRef] [PubMed]
  21. C. Herzinger, B. Johs, “The parametric semiconductor model,” in Guide to Using WVASE32 (Woollam, Lincoln, Neb., 1996), pp. 347–349.
  22. C. C. Kim, J. W. Garland, H. Abad, P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11,749–11,767 (1992).
    [CrossRef]
  23. X.-F. He, “Interband critical-band line shapes in confined semiconductor structures with arbitrary dimensionality: inhomogeneous broadening,” J. Opt. Soc. Am. B 14, 17–20 (1997).
    [CrossRef]
  24. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), pp. 523–528.
  25. I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123–R160 (1986).
    [CrossRef]
  26. K. von Rottkay, M. Rubin, N. Ozer, “Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings,” in Thin Films for Photovoltaic and Related Device Applications, D. Ginley, A. Catalano, H. W. Schock, C. Eberspacher, T. M. Peterson, T. Wada, eds., Mater. Res. Soc. Symp. Proc.403, 551–556 (1996).
    [CrossRef]
  27. J. Szczyrbowski, K. Schmalzbauer, H. Hoffman, “Optical properties of rough thin films,” Thin Solid Films 130, 57–73 (1985).
    [CrossRef]
  28. D. E. Aspnes, J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
    [CrossRef]
  29. C. Pickering, R. Greef, A. M. Hodge, “Characterisation of rough silicon surfaces using spectroscopic ellipsometry, reflectance, scanning electron microscopy and scattering measurements,” Mater. Sci. Eng. B 5, 295–299 (1990).
    [CrossRef]
  30. D. Rönnow, S. K. Andersson, G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).
    [CrossRef]
  31. D. E. Aspnes, “Microstructural information from optical properties in semiconductor technology,” in Optical Characterization Techniques for Semiconductor Technology, D. E. Aspnes, S. So, R. F. Potter, eds., Proc. SPIE276, 188–195 (1981).
    [CrossRef]
  32. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
  33. A. Azens, L. Kullman, G. Vaivars, H. Nordborg, C. G. Granqvist, “Sputter-deposited nickel oxide for electrochromic applications,” Solid State Ionics (to be published).
  34. F. Wooten, Optical Properties of Solids (Academic, New York, 1981).
  35. T. S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).

1998 (2)

T. Brousse, R. Retoux, U. Herterich, D. M. Schleich, “Thin-film crystalline SnO2-lithium electrodes,” J. Electrochem. Soc. 145, 1–4 (1998).
[CrossRef]

R. J. Martin-Palma, J. M. Martinez-Duart, “Accurate determination of the optical constants of sputter-deposited Ag and SnO2 for low emissivity coatings,” J. Vac. Sci. Technol. A 16, 409–412 (1998).
[CrossRef]

1997 (5)

U. Opara Krasovec, B. Orel, S. Hocevar, I. Musevic, “Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion storage capacity,” J. Electrochem. Soc. 144, 3398–3409 (1997).
[CrossRef]

I. A. Courtney, J. R. Dahn, “Electrochemical and in-situ x-ray diffraction studies of the reaction of lithium with tin oxide composites,” J. Electrochem. Soc. 144, 2045–2052 (1997).
[CrossRef]

Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science 276, 1395–1397 (1997).
[CrossRef]

X.-F. He, “Interband critical-band line shapes in confined semiconductor structures with arbitrary dimensionality: inhomogeneous broadening,” J. Opt. Soc. Am. B 14, 17–20 (1997).
[CrossRef]

F. Caccavale, R. Coppola, A. Menelle, M. Montecchi, P. Polato, G. Principi, “Characterization of SnOx on architectural glass by neutron reflectometry, SIMS, CEMS and spectrophotometry,” J. Non-Cryst. Solids 218, 291–295 (1997).
[CrossRef]

1996 (3)

J. Isidorsson, C. G. Granqvist, “Electrochromism of Li-intercalated Sn oxide films made by sputtering,” Solar Energy Mater. Solar Cells 44, 375–381 (1996).
[CrossRef]

J. Isidorsson, C. G. Granqvist, L. Häggström, E. Nordström, “Electrochromism in lithiated Sn oxide: Mössbauer spectroscopy data on valence state changes,” J. Appl. Phys. 80, 2367–2371 (1996).
[CrossRef]

P. Ruzakowski Athey, F. K. Urban, P. H. Holloway, “Use of multiple analytical techniques to confirm improved optical modelling of SnO2:F films by atomic force microscopy and spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 14, 3436–3444 (1996).
[CrossRef]

1995 (2)

W. Göpel, K. D. Schierbaum, “SnO2 sensors: current status and future prospects,” Sensors Actuators B 26–27, 1–12 (1995).

D. Rönnow, S. K. Andersson, G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).
[CrossRef]

1994 (3)

B. Orel, U. Lavrencic-Stangar, K. Kalcher, “Electrochemical and structural properties of SnO2 and SnO2:Sb transparent electrodes with mixed electronically conductive and ion-storage characteristics,” J. Electrochem. Soc. 141, L127–L130 (1994).
[CrossRef]

B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

F. K. Urban, P. Ruthakowski Athey, M. D. Islam, “Modeling of surface roughness in variable-angle spectroscopic ellipsometry using numerical processing of atomic force microscopy images,” Thin Solid Films 253, 326–332 (1994).

1993 (1)

P. Olivi, E. C. Pereira, E. Longo, J. A. Varella, L. O. de S. Bulhoes, “Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic devices,” J. Electrochem. Soc. 140, L81–L82 (1993).

1992 (1)

C. C. Kim, J. W. Garland, H. Abad, P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11,749–11,767 (1992).
[CrossRef]

1991 (1)

A. Roos, “Optical properties of pyrolytic tin oxide on aluminum,” Thin Solid Films 203, 41–48 (1991).
[CrossRef]

1990 (2)

G. Lévêque, Y. Villachon-Renard, “Determination of optical constants of thin film from reflectance spectra,” Appl. Opt. 29, 3207–3212 (1990).
[CrossRef] [PubMed]

C. Pickering, R. Greef, A. M. Hodge, “Characterisation of rough silicon surfaces using spectroscopic ellipsometry, reflectance, scanning electron microscopy and scattering measurements,” Mater. Sci. Eng. B 5, 295–299 (1990).
[CrossRef]

1987 (1)

1986 (1)

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123–R160 (1986).
[CrossRef]

1985 (1)

J. Szczyrbowski, K. Schmalzbauer, H. Hoffman, “Optical properties of rough thin films,” Thin Solid Films 130, 57–73 (1985).
[CrossRef]

1979 (1)

D. E. Aspnes, J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).

Abad, H.

C. C. Kim, J. W. Garland, H. Abad, P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11,749–11,767 (1992).
[CrossRef]

Andersson, S. K.

D. Rönnow, S. K. Andersson, G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).
[CrossRef]

Arrenius, P.

Aspnes, D. E.

D. E. Aspnes, J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

D. E. Aspnes, “Microstructural information from optical properties in semiconductor technology,” in Optical Characterization Techniques for Semiconductor Technology, D. E. Aspnes, S. So, R. F. Potter, eds., Proc. SPIE276, 188–195 (1981).
[CrossRef]

Azens, A.

A. Azens, L. Kullman, G. Vaivars, H. Nordborg, C. G. Granqvist, “Sputter-deposited nickel oxide for electrochromic applications,” Solid State Ionics (to be published).

Brousse, T.

T. Brousse, R. Retoux, U. Herterich, D. M. Schleich, “Thin-film crystalline SnO2-lithium electrodes,” J. Electrochem. Soc. 145, 1–4 (1998).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).

Bulhoes, L. O. de S.

P. Olivi, E. C. Pereira, E. Longo, J. A. Varella, L. O. de S. Bulhoes, “Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic devices,” J. Electrochem. Soc. 140, L81–L82 (1993).

Caccavale, F.

F. Caccavale, R. Coppola, A. Menelle, M. Montecchi, P. Polato, G. Principi, “Characterization of SnOx on architectural glass by neutron reflectometry, SIMS, CEMS and spectrophotometry,” J. Non-Cryst. Solids 218, 291–295 (1997).
[CrossRef]

Coppola, R.

F. Caccavale, R. Coppola, A. Menelle, M. Montecchi, P. Polato, G. Principi, “Characterization of SnOx on architectural glass by neutron reflectometry, SIMS, CEMS and spectrophotometry,” J. Non-Cryst. Solids 218, 291–295 (1997).
[CrossRef]

Courtney, I. A.

I. A. Courtney, J. R. Dahn, “Electrochemical and in-situ x-ray diffraction studies of the reaction of lithium with tin oxide composites,” J. Electrochem. Soc. 144, 2045–2052 (1997).
[CrossRef]

Dahn, J. R.

I. A. Courtney, J. R. Dahn, “Electrochemical and in-situ x-ray diffraction studies of the reaction of lithium with tin oxide composites,” J. Electrochem. Soc. 144, 2045–2052 (1997).
[CrossRef]

Eriksson, T. S.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), pp. 523–528.

Garland, J. W.

C. C. Kim, J. W. Garland, H. Abad, P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11,749–11,767 (1992).
[CrossRef]

Göpel, W.

W. Göpel, K. D. Schierbaum, “SnO2 sensors: current status and future prospects,” Sensors Actuators B 26–27, 1–12 (1995).

Granqvist, C. G.

J. Isidorsson, C. G. Granqvist, “Electrochromism of Li-intercalated Sn oxide films made by sputtering,” Solar Energy Mater. Solar Cells 44, 375–381 (1996).
[CrossRef]

J. Isidorsson, C. G. Granqvist, L. Häggström, E. Nordström, “Electrochromism in lithiated Sn oxide: Mössbauer spectroscopy data on valence state changes,” J. Appl. Phys. 80, 2367–2371 (1996).
[CrossRef]

B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

I. Hamberg, J. S. E. M. Svensson, T. S. Eriksson, C. G. Granqvist, P. Arrenius, F. Norin, “Radiative cooling and frost formation on surfaces with different thermal emittance: theoretical analysis and practical experience,” Appl. Opt. 26, 2131–2136 (1987).
[CrossRef] [PubMed]

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123–R160 (1986).
[CrossRef]

A. Azens, L. Kullman, G. Vaivars, H. Nordborg, C. G. Granqvist, “Sputter-deposited nickel oxide for electrochromic applications,” Solid State Ionics (to be published).

C. G. Granqvist, Handbook of Inorganic Electrochromic Oxides (Elsevier, Amsterdam, 1995).

Greef, R.

C. Pickering, R. Greef, A. M. Hodge, “Characterisation of rough silicon surfaces using spectroscopic ellipsometry, reflectance, scanning electron microscopy and scattering measurements,” Mater. Sci. Eng. B 5, 295–299 (1990).
[CrossRef]

Häggström, L.

J. Isidorsson, C. G. Granqvist, L. Häggström, E. Nordström, “Electrochromism in lithiated Sn oxide: Mössbauer spectroscopy data on valence state changes,” J. Appl. Phys. 80, 2367–2371 (1996).
[CrossRef]

Hamberg, I.

He, X.-F.

Herterich, U.

T. Brousse, R. Retoux, U. Herterich, D. M. Schleich, “Thin-film crystalline SnO2-lithium electrodes,” J. Electrochem. Soc. 145, 1–4 (1998).
[CrossRef]

Herzinger, C.

C. Herzinger, B. Johs, “The parametric semiconductor model,” in Guide to Using WVASE32 (Woollam, Lincoln, Neb., 1996), pp. 347–349.

Hocevar, S.

U. Opara Krasovec, B. Orel, S. Hocevar, I. Musevic, “Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion storage capacity,” J. Electrochem. Soc. 144, 3398–3409 (1997).
[CrossRef]

Hodge, A. M.

C. Pickering, R. Greef, A. M. Hodge, “Characterisation of rough silicon surfaces using spectroscopic ellipsometry, reflectance, scanning electron microscopy and scattering measurements,” Mater. Sci. Eng. B 5, 295–299 (1990).
[CrossRef]

Hoffman, H.

J. Szczyrbowski, K. Schmalzbauer, H. Hoffman, “Optical properties of rough thin films,” Thin Solid Films 130, 57–73 (1985).
[CrossRef]

Holloway, P. H.

P. Ruzakowski Athey, F. K. Urban, P. H. Holloway, “Use of multiple analytical techniques to confirm improved optical modelling of SnO2:F films by atomic force microscopy and spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 14, 3436–3444 (1996).
[CrossRef]

Idota, Y.

Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science 276, 1395–1397 (1997).
[CrossRef]

Isidorsson, J.

J. Isidorsson, C. G. Granqvist, L. Häggström, E. Nordström, “Electrochromism in lithiated Sn oxide: Mössbauer spectroscopy data on valence state changes,” J. Appl. Phys. 80, 2367–2371 (1996).
[CrossRef]

J. Isidorsson, C. G. Granqvist, “Electrochromism of Li-intercalated Sn oxide films made by sputtering,” Solar Energy Mater. Solar Cells 44, 375–381 (1996).
[CrossRef]

Islam, M. D.

F. K. Urban, P. Ruthakowski Athey, M. D. Islam, “Modeling of surface roughness in variable-angle spectroscopic ellipsometry using numerical processing of atomic force microscopy images,” Thin Solid Films 253, 326–332 (1994).

Johs, B.

C. Herzinger, B. Johs, “The parametric semiconductor model,” in Guide to Using WVASE32 (Woollam, Lincoln, Neb., 1996), pp. 347–349.

Kalcher, K.

B. Orel, U. Lavrencic-Stangar, K. Kalcher, “Electrochemical and structural properties of SnO2 and SnO2:Sb transparent electrodes with mixed electronically conductive and ion-storage characteristics,” J. Electrochem. Soc. 141, L127–L130 (1994).
[CrossRef]

Kim, C. C.

C. C. Kim, J. W. Garland, H. Abad, P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11,749–11,767 (1992).
[CrossRef]

Kubota, T.

Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science 276, 1395–1397 (1997).
[CrossRef]

Kullman, L.

A. Azens, L. Kullman, G. Vaivars, H. Nordborg, C. G. Granqvist, “Sputter-deposited nickel oxide for electrochromic applications,” Solid State Ionics (to be published).

Lantto, V.

V. Lantto, “Semiconductor gas sensors based on SnO2 thick films,” in Gas Sensors, G. Sberveglieri, ed. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 117–167.
[CrossRef]

Lavrencic-Stangar, U.

B. Orel, U. Lavrencic-Stangar, K. Kalcher, “Electrochemical and structural properties of SnO2 and SnO2:Sb transparent electrodes with mixed electronically conductive and ion-storage characteristics,” J. Electrochem. Soc. 141, L127–L130 (1994).
[CrossRef]

Lévêque, G.

Longo, E.

P. Olivi, E. C. Pereira, E. Longo, J. A. Varella, L. O. de S. Bulhoes, “Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic devices,” J. Electrochem. Soc. 140, L81–L82 (1993).

Maekawa, Y.

Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science 276, 1395–1397 (1997).
[CrossRef]

Martinez-Duart, J. M.

R. J. Martin-Palma, J. M. Martinez-Duart, “Accurate determination of the optical constants of sputter-deposited Ag and SnO2 for low emissivity coatings,” J. Vac. Sci. Technol. A 16, 409–412 (1998).
[CrossRef]

Martin-Palma, R. J.

R. J. Martin-Palma, J. M. Martinez-Duart, “Accurate determination of the optical constants of sputter-deposited Ag and SnO2 for low emissivity coatings,” J. Vac. Sci. Technol. A 16, 409–412 (1998).
[CrossRef]

Matsufuji, A.

Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science 276, 1395–1397 (1997).
[CrossRef]

Menelle, A.

F. Caccavale, R. Coppola, A. Menelle, M. Montecchi, P. Polato, G. Principi, “Characterization of SnOx on architectural glass by neutron reflectometry, SIMS, CEMS and spectrophotometry,” J. Non-Cryst. Solids 218, 291–295 (1997).
[CrossRef]

Miyasaka, T.

Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science 276, 1395–1397 (1997).
[CrossRef]

Montecchi, M.

F. Caccavale, R. Coppola, A. Menelle, M. Montecchi, P. Polato, G. Principi, “Characterization of SnOx on architectural glass by neutron reflectometry, SIMS, CEMS and spectrophotometry,” J. Non-Cryst. Solids 218, 291–295 (1997).
[CrossRef]

Moss, T. S.

T. S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).

Musevic, I.

U. Opara Krasovec, B. Orel, S. Hocevar, I. Musevic, “Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion storage capacity,” J. Electrochem. Soc. 144, 3398–3409 (1997).
[CrossRef]

Niklasson, G. A.

D. Rönnow, S. K. Andersson, G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).
[CrossRef]

Nordborg, H.

A. Azens, L. Kullman, G. Vaivars, H. Nordborg, C. G. Granqvist, “Sputter-deposited nickel oxide for electrochromic applications,” Solid State Ionics (to be published).

Nordström, E.

J. Isidorsson, C. G. Granqvist, L. Häggström, E. Nordström, “Electrochromism in lithiated Sn oxide: Mössbauer spectroscopy data on valence state changes,” J. Appl. Phys. 80, 2367–2371 (1996).
[CrossRef]

Norin, F.

Olivi, P.

P. Olivi, E. C. Pereira, E. Longo, J. A. Varella, L. O. de S. Bulhoes, “Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic devices,” J. Electrochem. Soc. 140, L81–L82 (1993).

Olsson, E.

B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

Opara Krasovec, U.

U. Opara Krasovec, B. Orel, S. Hocevar, I. Musevic, “Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion storage capacity,” J. Electrochem. Soc. 144, 3398–3409 (1997).
[CrossRef]

Orel, B.

U. Opara Krasovec, B. Orel, S. Hocevar, I. Musevic, “Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion storage capacity,” J. Electrochem. Soc. 144, 3398–3409 (1997).
[CrossRef]

B. Orel, U. Lavrencic-Stangar, K. Kalcher, “Electrochemical and structural properties of SnO2 and SnO2:Sb transparent electrodes with mixed electronically conductive and ion-storage characteristics,” J. Electrochem. Soc. 141, L127–L130 (1994).
[CrossRef]

Ozer, N.

K. von Rottkay, M. Rubin, N. Ozer, “Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings,” in Thin Films for Photovoltaic and Related Device Applications, D. Ginley, A. Catalano, H. W. Schock, C. Eberspacher, T. M. Peterson, T. Wada, eds., Mater. Res. Soc. Symp. Proc.403, 551–556 (1996).
[CrossRef]

Pereira, E. C.

P. Olivi, E. C. Pereira, E. Longo, J. A. Varella, L. O. de S. Bulhoes, “Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic devices,” J. Electrochem. Soc. 140, L81–L82 (1993).

Pickering, C.

C. Pickering, R. Greef, A. M. Hodge, “Characterisation of rough silicon surfaces using spectroscopic ellipsometry, reflectance, scanning electron microscopy and scattering measurements,” Mater. Sci. Eng. B 5, 295–299 (1990).
[CrossRef]

Polato, P.

F. Caccavale, R. Coppola, A. Menelle, M. Montecchi, P. Polato, G. Principi, “Characterization of SnOx on architectural glass by neutron reflectometry, SIMS, CEMS and spectrophotometry,” J. Non-Cryst. Solids 218, 291–295 (1997).
[CrossRef]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), pp. 523–528.

Principi, G.

F. Caccavale, R. Coppola, A. Menelle, M. Montecchi, P. Polato, G. Principi, “Characterization of SnOx on architectural glass by neutron reflectometry, SIMS, CEMS and spectrophotometry,” J. Non-Cryst. Solids 218, 291–295 (1997).
[CrossRef]

Raccah, P. M.

C. C. Kim, J. W. Garland, H. Abad, P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11,749–11,767 (1992).
[CrossRef]

Retoux, R.

T. Brousse, R. Retoux, U. Herterich, D. M. Schleich, “Thin-film crystalline SnO2-lithium electrodes,” J. Electrochem. Soc. 145, 1–4 (1998).
[CrossRef]

Rönnow, D.

D. Rönnow, S. K. Andersson, G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).
[CrossRef]

Roos, A.

A. Roos, “Optical properties of pyrolytic tin oxide on aluminum,” Thin Solid Films 203, 41–48 (1991).
[CrossRef]

Rubin, M.

K. von Rottkay, M. Rubin, “Optical indices of pyrolitic tin-oxide glass,” in Polycrystalline Thin Films: Structure, Texture, Properties and Applications II, H. J. Frost, M. A. Parker, C. A. Ross, E. A. Holm, eds., Mater. Res. Soc. Symp. Proc.426, 449–454 (1996).
[CrossRef]

K. von Rottkay, M. Rubin, N. Ozer, “Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings,” in Thin Films for Photovoltaic and Related Device Applications, D. Ginley, A. Catalano, H. W. Schock, C. Eberspacher, T. M. Peterson, T. Wada, eds., Mater. Res. Soc. Symp. Proc.403, 551–556 (1996).
[CrossRef]

Ruthakowski Athey, P.

F. K. Urban, P. Ruthakowski Athey, M. D. Islam, “Modeling of surface roughness in variable-angle spectroscopic ellipsometry using numerical processing of atomic force microscopy images,” Thin Solid Films 253, 326–332 (1994).

Ruzakowski Athey, P.

P. Ruzakowski Athey, F. K. Urban, P. H. Holloway, “Use of multiple analytical techniques to confirm improved optical modelling of SnO2:F films by atomic force microscopy and spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 14, 3436–3444 (1996).
[CrossRef]

Schierbaum, K. D.

W. Göpel, K. D. Schierbaum, “SnO2 sensors: current status and future prospects,” Sensors Actuators B 26–27, 1–12 (1995).

Schleich, D. M.

T. Brousse, R. Retoux, U. Herterich, D. M. Schleich, “Thin-film crystalline SnO2-lithium electrodes,” J. Electrochem. Soc. 145, 1–4 (1998).
[CrossRef]

Schmalzbauer, K.

J. Szczyrbowski, K. Schmalzbauer, H. Hoffman, “Optical properties of rough thin films,” Thin Solid Films 130, 57–73 (1985).
[CrossRef]

Stjerna, B.

B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

Svensson, J. S. E. M.

Szczyrbowski, J.

J. Szczyrbowski, K. Schmalzbauer, H. Hoffman, “Optical properties of rough thin films,” Thin Solid Films 130, 57–73 (1985).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), pp. 523–528.

Theeten, J. B.

D. E. Aspnes, J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

Urban, F. K.

P. Ruzakowski Athey, F. K. Urban, P. H. Holloway, “Use of multiple analytical techniques to confirm improved optical modelling of SnO2:F films by atomic force microscopy and spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 14, 3436–3444 (1996).
[CrossRef]

F. K. Urban, P. Ruthakowski Athey, M. D. Islam, “Modeling of surface roughness in variable-angle spectroscopic ellipsometry using numerical processing of atomic force microscopy images,” Thin Solid Films 253, 326–332 (1994).

Vaivars, G.

A. Azens, L. Kullman, G. Vaivars, H. Nordborg, C. G. Granqvist, “Sputter-deposited nickel oxide for electrochromic applications,” Solid State Ionics (to be published).

Varella, J. A.

P. Olivi, E. C. Pereira, E. Longo, J. A. Varella, L. O. de S. Bulhoes, “Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic devices,” J. Electrochem. Soc. 140, L81–L82 (1993).

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), pp. 523–528.

Villachon-Renard, Y.

von Rottkay, K.

K. von Rottkay, M. Rubin, “Optical indices of pyrolitic tin-oxide glass,” in Polycrystalline Thin Films: Structure, Texture, Properties and Applications II, H. J. Frost, M. A. Parker, C. A. Ross, E. A. Holm, eds., Mater. Res. Soc. Symp. Proc.426, 449–454 (1996).
[CrossRef]

K. von Rottkay, M. Rubin, N. Ozer, “Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings,” in Thin Films for Photovoltaic and Related Device Applications, D. Ginley, A. Catalano, H. W. Schock, C. Eberspacher, T. M. Peterson, T. Wada, eds., Mater. Res. Soc. Symp. Proc.403, 551–556 (1996).
[CrossRef]

Wooten, F.

F. Wooten, Optical Properties of Solids (Academic, New York, 1981).

Ann. Phys. (Leipzig) (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).

Appl. Opt. (2)

J. Appl. Phys. (3)

B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

J. Isidorsson, C. G. Granqvist, L. Häggström, E. Nordström, “Electrochromism in lithiated Sn oxide: Mössbauer spectroscopy data on valence state changes,” J. Appl. Phys. 80, 2367–2371 (1996).
[CrossRef]

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123–R160 (1986).
[CrossRef]

J. Electrochem. Soc. (5)

T. Brousse, R. Retoux, U. Herterich, D. M. Schleich, “Thin-film crystalline SnO2-lithium electrodes,” J. Electrochem. Soc. 145, 1–4 (1998).
[CrossRef]

I. A. Courtney, J. R. Dahn, “Electrochemical and in-situ x-ray diffraction studies of the reaction of lithium with tin oxide composites,” J. Electrochem. Soc. 144, 2045–2052 (1997).
[CrossRef]

P. Olivi, E. C. Pereira, E. Longo, J. A. Varella, L. O. de S. Bulhoes, “Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic devices,” J. Electrochem. Soc. 140, L81–L82 (1993).

B. Orel, U. Lavrencic-Stangar, K. Kalcher, “Electrochemical and structural properties of SnO2 and SnO2:Sb transparent electrodes with mixed electronically conductive and ion-storage characteristics,” J. Electrochem. Soc. 141, L127–L130 (1994).
[CrossRef]

U. Opara Krasovec, B. Orel, S. Hocevar, I. Musevic, “Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion storage capacity,” J. Electrochem. Soc. 144, 3398–3409 (1997).
[CrossRef]

J. Non-Cryst. Solids (1)

F. Caccavale, R. Coppola, A. Menelle, M. Montecchi, P. Polato, G. Principi, “Characterization of SnOx on architectural glass by neutron reflectometry, SIMS, CEMS and spectrophotometry,” J. Non-Cryst. Solids 218, 291–295 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. A (1)

R. J. Martin-Palma, J. M. Martinez-Duart, “Accurate determination of the optical constants of sputter-deposited Ag and SnO2 for low emissivity coatings,” J. Vac. Sci. Technol. A 16, 409–412 (1998).
[CrossRef]

J. Vac. Sci. Technol. B (1)

P. Ruzakowski Athey, F. K. Urban, P. H. Holloway, “Use of multiple analytical techniques to confirm improved optical modelling of SnO2:F films by atomic force microscopy and spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 14, 3436–3444 (1996).
[CrossRef]

Mater. Sci. Eng. B (1)

C. Pickering, R. Greef, A. M. Hodge, “Characterisation of rough silicon surfaces using spectroscopic ellipsometry, reflectance, scanning electron microscopy and scattering measurements,” Mater. Sci. Eng. B 5, 295–299 (1990).
[CrossRef]

Opt. Mater. (1)

D. Rönnow, S. K. Andersson, G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).
[CrossRef]

Phys. Rev. B (2)

D. E. Aspnes, J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

C. C. Kim, J. W. Garland, H. Abad, P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11,749–11,767 (1992).
[CrossRef]

Science (1)

Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science 276, 1395–1397 (1997).
[CrossRef]

Sensors Actuators B (1)

W. Göpel, K. D. Schierbaum, “SnO2 sensors: current status and future prospects,” Sensors Actuators B 26–27, 1–12 (1995).

Solar Energy Mater. Solar Cells (1)

J. Isidorsson, C. G. Granqvist, “Electrochromism of Li-intercalated Sn oxide films made by sputtering,” Solar Energy Mater. Solar Cells 44, 375–381 (1996).
[CrossRef]

Thin Solid Films (3)

A. Roos, “Optical properties of pyrolytic tin oxide on aluminum,” Thin Solid Films 203, 41–48 (1991).
[CrossRef]

F. K. Urban, P. Ruthakowski Athey, M. D. Islam, “Modeling of surface roughness in variable-angle spectroscopic ellipsometry using numerical processing of atomic force microscopy images,” Thin Solid Films 253, 326–332 (1994).

J. Szczyrbowski, K. Schmalzbauer, H. Hoffman, “Optical properties of rough thin films,” Thin Solid Films 130, 57–73 (1985).
[CrossRef]

Other (10)

D. E. Aspnes, “Microstructural information from optical properties in semiconductor technology,” in Optical Characterization Techniques for Semiconductor Technology, D. E. Aspnes, S. So, R. F. Potter, eds., Proc. SPIE276, 188–195 (1981).
[CrossRef]

A. Azens, L. Kullman, G. Vaivars, H. Nordborg, C. G. Granqvist, “Sputter-deposited nickel oxide for electrochromic applications,” Solid State Ionics (to be published).

F. Wooten, Optical Properties of Solids (Academic, New York, 1981).

T. S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).

C. Herzinger, B. Johs, “The parametric semiconductor model,” in Guide to Using WVASE32 (Woollam, Lincoln, Neb., 1996), pp. 347–349.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), pp. 523–528.

K. von Rottkay, M. Rubin, N. Ozer, “Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings,” in Thin Films for Photovoltaic and Related Device Applications, D. Ginley, A. Catalano, H. W. Schock, C. Eberspacher, T. M. Peterson, T. Wada, eds., Mater. Res. Soc. Symp. Proc.403, 551–556 (1996).
[CrossRef]

K. von Rottkay, M. Rubin, “Optical indices of pyrolitic tin-oxide glass,” in Polycrystalline Thin Films: Structure, Texture, Properties and Applications II, H. J. Frost, M. A. Parker, C. A. Ross, E. A. Holm, eds., Mater. Res. Soc. Symp. Proc.426, 449–454 (1996).
[CrossRef]

C. G. Granqvist, Handbook of Inorganic Electrochromic Oxides (Elsevier, Amsterdam, 1995).

V. Lantto, “Semiconductor gas sensors based on SnO2 thick films,” in Gas Sensors, G. Sberveglieri, ed. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 117–167.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Growth rate, (b) mass density, and (c) product of these two entities versus oxygen partial pressure for sputter-deposited Sn oxide films. Symbols denote experimental data, and curves serve as a guide for the eye.

Fig. 2
Fig. 2

Sheet resistance versus oxygen partial pressure for sputter-deposited Sn oxide films. Symbols denote experimental data; the curve serves as a guide for the eye.

Fig. 3
Fig. 3

Atomic-force micrograph of the surface of a 283-nm-thick Sn oxide film sputter deposited at an oxygen partial pressure of 4.5 mTorr.

Fig. 4
Fig. 4

rms roughness, peak-to-peak roughness, and optical roughness versus oxygen partial pressure for sputter-deposited Sn oxide films. The two first-mentioned sets of data were recorded by AFM, as labeled. Symbols denote experimental data; the lines serve as a guide for the eye.

Fig. 5
Fig. 5

Lithium content (count) versus distance from the surface (channel number) for electrochemically lithiated Sn oxide films. The data were obtained from nuclear reaction analysis. Symbols denote experimental data; the curves serve as a guide for the eye.

Fig. 6
Fig. 6

Experimental and calculated data on (a) ellipsometric Ψ and (b) Δ as well as (c) spectrophotometric transmittance for a 283-nm-thick Sn oxide film sputter deposited at an oxygen partial pressure of 4.5 mTorr. Symbols and curves refer to data for the three indicated angles (in degrees). Only a few of the 450 data points are marked with symbols.

Fig. 7
Fig. 7

Refractive index versus oxygen partial pressure for sputter-deposited Sn oxide thin films. Data were taken at the wavelength λ shown. Symbols denote experimental data; the curve serves as a guide for the eye.

Fig. 8
Fig. 8

(a) Spectral refractive index, (b) extinction coefficient, and (c) transmittance of Sn oxide films sputter deposited at four magnitudes of the oxygen partial pressure, p(O2).

Fig. 9
Fig. 9

(a) Spectral refractive index, (b) extinction coefficient, and (c) transmittance of sputter deposited Sn oxide–based films at four magnitudes of the hydrogen partial pressure, p(H2).

Fig. 10
Fig. 10

Optical bandgap versus hydrogen partial pressure for sputter-deposited Sn oxide–based films. Symbols denote experimental data; the curve is an aid for the eye.

Fig. 11
Fig. 11

(a) Spectral refractive index, (b) extinction coefficient, and (c) transmittance of a Sn oxide–based film sputter deposited at an oxygen partial pressure of 4.5 mTorr. Data pertain to the as-deposited (ad) state and after electrochemical intercalation with lithium at three different voltages versus Li/Li+.

Fig. 12
Fig. 12

Refractive index versus distance from the surface of a Sn oxide–based film sputter deposited at an oxygen partial pressure of 4.5 mTorr. Data were taken at the wavelength λ shown. They pertain to the as-deposited (ad) state and after electrochemical intercalation with lithium at three different voltages versus Li/Li+. The actual data correspond to ladders with five steps; smooth curves were drawn without essential loss of information to display the refractive-index profiles clearly.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r ˜ p / r ˜ s = tan Ψ exp i Δ .
MSE = 1 N - M λ Θ Ψ λ , Θ , cal - Ψ λ , Θ , exp σ λ , Θ , Ψ 2 + Δ λ , Θ , cal - Δ λ , Θ , exp σ λ , Θ , Δ 2 + T λ , cal - T λ , exp σ T 2 1 / 2 .
α = 2 π k λ ,
E - E g     E α ,
n 4 E g = const .

Metrics