Abstract

The design and implementation of a prototype time-of-flight optical ranging system based on the time-correlated single-photon-counting technique are described. The sensor is characterized in terms of its longitudinal and transverse spatial resolution, single-point measurement time, and long-term stability. The system has been operated at stand-off distances of 0.5–5 m, has a depth repeatability of <30 μm, and has a lateral spatial resolution of <500 μm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Besl, “Active optical imaging sensors,” Mach. Vision Appl. 1, 127–152 (1988).
    [CrossRef]
  2. D. V. O’Connor, D. Phillips, Time Correlated Single Photon Counting (Academic, London, 1984).
  3. J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
    [CrossRef]
  4. J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
    [CrossRef]
  5. G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
    [CrossRef]
  6. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
    [CrossRef] [PubMed]
  7. B. T. Turko, J. A. Nairn, K. Sauer, “Single photon timing system for picosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 54, 118–120 (1983).
    [CrossRef]
  8. Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, N. M. Stel’makh, “Picosecond pulses from Q-switched heterostructure injection lasers,” Sov. Tech. Phys. Lett. 12, 452–453 (1986).
  9. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching-circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
    [CrossRef]
  10. A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
    [CrossRef]
  11. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
    [CrossRef]

1997 (1)

1996 (1)

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching-circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

1994 (1)

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

1992 (2)

G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

1989 (2)

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

1988 (1)

P. J. Besl, “Active optical imaging sensors,” Mach. Vision Appl. 1, 127–152 (1988).
[CrossRef]

1986 (1)

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, N. M. Stel’makh, “Picosecond pulses from Q-switched heterostructure injection lasers,” Sov. Tech. Phys. Lett. 12, 452–453 (1986).

1983 (1)

B. T. Turko, J. A. Nairn, K. Sauer, “Single photon timing system for picosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 54, 118–120 (1983).
[CrossRef]

Alferov, Z. I.

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, N. M. Stel’makh, “Picosecond pulses from Q-switched heterostructure injection lasers,” Sov. Tech. Phys. Lett. 12, 452–453 (1986).

Besl, P. J.

P. J. Besl, “Active optical imaging sensors,” Mach. Vision Appl. 1, 127–152 (1988).
[CrossRef]

Buller, G. S.

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
[CrossRef] [PubMed]

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Cavenett, B. C.

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

Cova, S.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching-circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
[CrossRef]

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Fancey, S. J.

Ghioni, M.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching-circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Kuselewicz, R.

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Lacaita, A.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching-circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Louis, T. A.

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Massa, J. S.

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
[CrossRef] [PubMed]

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Nairn, J. A.

B. T. Turko, J. A. Nairn, K. Sauer, “Single photon timing system for picosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 54, 118–120 (1983).
[CrossRef]

O’Connor, D. V.

D. V. O’Connor, D. Phillips, Time Correlated Single Photon Counting (Academic, London, 1984).

Oudar, J. L.

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Phillips, D.

D. V. O’Connor, D. Phillips, Time Correlated Single Photon Counting (Academic, London, 1984).

Portnoi, E. L.

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, N. M. Stel’makh, “Picosecond pulses from Q-switched heterostructure injection lasers,” Sov. Tech. Phys. Lett. 12, 452–453 (1986).

Prior, K. A.

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

Rao, E. V. K.

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Ripamonti, G.

G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Samori, C.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching-circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

Sauer, K.

B. T. Turko, J. A. Nairn, K. Sauer, “Single photon timing system for picosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 54, 118–120 (1983).
[CrossRef]

Sfez, B. G.

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Simpson, J.

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

Stel’makh, N. M.

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, N. M. Stel’makh, “Picosecond pulses from Q-switched heterostructure injection lasers,” Sov. Tech. Phys. Lett. 12, 452–453 (1986).

Turko, B. T.

B. T. Turko, J. A. Nairn, K. Sauer, “Single photon timing system for picosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 54, 118–120 (1983).
[CrossRef]

Walker, A. C.

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
[CrossRef] [PubMed]

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

Wallace, A. M.

Zappa, F.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching-circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
[CrossRef]

Zuravlev, A. B.

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, N. M. Stel’makh, “Picosecond pulses from Q-switched heterostructure injection lasers,” Sov. Tech. Phys. Lett. 12, 452–453 (1986).

Appl. Opt. (1)

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching-circuits for single-photon detection,” Appl. Opt. 35, 1954–1976 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

J. S. Massa, G. S. Buller, A. C. Walker, J. L. Oudar, E. V. K. Rao, B. G. Sfez, R. Kuselewicz, “Evidence of carrier confinement in nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy mixing techniques,” Appl. Phys. Lett. 61, 2205–2207 (1992).
[CrossRef]

J. S. Massa, G. S. Buller, A. C. Walker, J. Simpson, K. A. Prior, B. C. Cavenett, “Photoluminescence decay measurements of n- and p-type doped ZnSe grown by molecular beam epitaxy,” Appl. Phys. Lett. 64, 589–591 (1994).
[CrossRef]

Electron. Lett. (1)

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche-diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

J. Lightwave Technol. (1)

G. Ripamonti, F. Zappa, S. Cova, “Effects of trap levels in single-photon optical time-domain reflectrometry—evaluation and correction,” J. Lightwave Technol. 10, 1398–1402 (1992).
[CrossRef]

Mach. Vision Appl. (1)

P. J. Besl, “Active optical imaging sensors,” Mach. Vision Appl. 1, 127–152 (1988).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

B. T. Turko, J. A. Nairn, K. Sauer, “Single photon timing system for picosecond fluorescence lifetime measurements,” Rev. Sci. Instrum. 54, 118–120 (1983).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20ps timing resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

Z. I. Alferov, A. B. Zuravlev, E. L. Portnoi, N. M. Stel’makh, “Picosecond pulses from Q-switched heterostructure injection lasers,” Sov. Tech. Phys. Lett. 12, 452–453 (1986).

Other (1)

D. V. O’Connor, D. Phillips, Time Correlated Single Photon Counting (Academic, London, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a TCSPC ranging system, indicating the main components.

Fig. 2
Fig. 2

Timing diagram for the TCSPC ranging system, indicating the temporal positions of the scattered signals from the target and the reference (b) relative to the laser pulse (a). Also shown are the relative positions of the delayed trigger (c) for operation of the TAC in reverse mode and a second trigger signal (d) for use in the dual-trigger scheme. The diagram at the bottom represents the TCSPC histogram that defines the separation of the histogram peaks.

Fig. 3
Fig. 3

Log-linear plot of a typical TCSPC histogram obtained from the system and indicating the scattered signals from the target and reference surfaces. The plot contains 4096 time bins, each with a width of 2.44 Ps. The temporal width of each peak is ∼60 Ps (FWHM).

Fig. 4
Fig. 4

Plan view of the TCSPC ranging system, indicating the main components. CMOS, complementary metal–oxide semiconductor.

Fig. 5
Fig. 5

Distance repeatability and temporal repeatability, Δτ, versus the integrated number of counts in the TCSPC histogram. Circles, standard deviation for repeated experimental measurements on a 1-m distant target; triangles, results of a Monte Carlo simulation.

Fig. 6
Fig. 6

Measured detection rate of backscattered photons as a function of incident angle for various materials. The collection system was operating at f/125, and the laser repetition rate was10 MHz. The dashed line marks the maximum signal level acceptable for correct operation of the system, at which the maximum signal-to-background ratio is attained.

Fig. 7
Fig. 7

Stability plot, showing the deviation of a fixed distance measurement as a function of time. Also shown is the room-temperature variation.

Fig. 8
Fig. 8

Stability plot, showing the deviation of a fixed distance measurement as a function of time for a temperature-stabilized system.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ = t 4 n - t 2 n - t 3 n - t 1 n .
σ ¯ = σ / N .
N d = N v P d .
P d = η Out η Rec η Det η Scat 8 f Col / # 2 .
S = R 1 - exp - N d .
S = RN d = R p .
SBR = N d N B = S RD τ peak .
SBR MAX = 0.05 D τ peak .
SNR = N L N d N L N d + N L N B 1 / 2 = N L N d N d + N B .
N d min 1 N L
N L N B     1 .
N L     1 N B .
SNR N L N d N L N B = N L N d N B ,
N d min N B N L .

Metrics