Abstract

The photon scanning-tunneling microscope (PSTM) yields optical topographical images of samples that are thin or that are transparent at the wavelength used. A range of sample sizes can be imaged extending to well below the diffraction limit for sufficiently flat samples. But samples of the order of several to many micrometers in size can be analyzed with less-refined resolution if total internal reflection can be made to occur in the sample. We used the PSTM to examine the optical topography of mouse and human cells and of chromosomes that are unstained. Our objectives were to demonstrate the images as an alternative to conventional microscopy and to provide a sample-preparation methodology that will later permit localized, simultaneous fluorescence or absorption spectroscopy with the signals collected by the probe tip. Furthermore, the PSTM’s ability to produce optical profiles in air and in water was tested to establish the basis for future investigation of possible abnormalities in the chromosomes. That is, we considered both physical and biological objectives. To this end we utilized the 442-nm line of a He–Cd laser as well as the 633-nm line from a He–Ne laser, the resulting image quality being tested partly to ascertain the increased effects of scattering at the smaller wavelength. It is shown that adequate resolution and signal-to-noise ratio can be obtained with the shorter wavelength even in the presence of intensity fluctuations from the laser, thus showing that fluorescence and absorption studies can be expected to be practicable.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Reddick, R. J. Warmack, T. L. Ferrell, “A new form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
    [CrossRef]
  2. D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
    [CrossRef]
  3. R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61(12), 3669–3677 (1990).
    [CrossRef]
  4. M. A. Paesler, P. J. Moyer, C. J. Jahncke, C. E. Johnson, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analytical photon scanning tunneling microscopy,” Phys. Rev. B 42(10), 6750–6753 (1990).
    [CrossRef]
  5. H. Pagnia, J. Radojewski, N. Sotnik, “Operation conditions of an optical STM,” Optik Stuttgart 86, 87–90 (1990).
  6. T. L. Ferrell, J. P. Goudonnet, R. C. Reddick, S. H. Sharp, R. J. Warmack, “The photon scanning tunneling microscope,” J. Vac. Sci. Technol. B 9(2), 525–530 (1991).
    [CrossRef]
  7. J. P. Goudonnet, T. L. Ferrell, “La microscopie à effet tunnel photonique,” Spectra 2000 155, 39–42 (1991).
  8. T. L. Ferrell, S. L. Sharp, R. J. Warmack, “Progress in photon scanning-tunneling microscopy (PSTM),” Ultramicroscopy 42–44, 408–415 (1992).
    [CrossRef]
  9. S. L. Sharp, R. J. Warmack, J. P. Goudonnet, I. Lee, T. L. Ferrell, “Spectroscopy and imaging using the photon scanning-tunneling microscope,” Acc. Chem. Res. 26, 377–382 (1993).
    [CrossRef]
  10. I. Lee, T. Thundat, R. J. Warmack, D. P. Allison, T. L. Ferrell, L. Tkachuk, G. D. Griffin, “Atomic force microscopy and photon scanning tunneling microscopy of liposomes and filtration membrane,” Bull. Am. Phys. Soc. 38(1), 118 (1993).
  11. I. Lee, R. J. Warmack, T. L. Ferrell, “Laser lithography by photon scanning tunneling microscopy,” in Proceedings of the Second International Conference on Laser Ablation, J. C. Miller, D. B. Geohegan, eds. (American Institute of Physics, New York, 1994), p. 544.
  12. J. P. Goudonnet, E. Bourillot, P. M. Adam, F. de Fornel, L. Salomon, P. Vincent, M. Neviere, T. L. Ferrell, “Imaging of test quartz gratings with a photon scanning tunneling microscope. Experiment and theory,” J. Opt. Soc. Am. A 12, 1749–1764.
  13. A. J. Meixner, M. A. Bopp, G. Tarrach, “Direct measurement of standing evanescent waves with a photon-scanning tunneling microscope,” Appl. Opt. 33, 7995–8000 (1994).
    [CrossRef] [PubMed]
  14. F. de Fornel, P. M. Adam, L. Salomon, J. P. Goudonnet, P. Guérin, “Effect of coherence of the source on the images obtained with a photon scanning tunneling microscope,” Opt. Lett. 19, 1082–1084 (1994).
    [CrossRef] [PubMed]
  15. J. P. Fillard, M. Castagne, C. Prioleau, E. Baudry, P. Gall, J. Bonnafe, “Photon tunneling from semiconductor surfaces to atomic force microscopy probes,” Mater. Sci. Eng. B 28, 493–496 (1994);R. L. Williamson, C. J. Binks, M. J. Miles, “Scanning tunnelling optical microscopy—breaking a resolution barrier?” Ultramicroscopy 57, 235–240 (1995).
    [CrossRef]
  16. M. H. P. Moers, A. G. T. Ruiter, A. Jalocha, N. F. van Hulst, “Detection of fluorescence in situ hybridization on human metaphase chromosomes by near-field scanning optical microscopy,” Ultramicroscopy 61, 279–283 (1995).
    [CrossRef] [PubMed]
  17. B. Hecht, H. Heinzelmann, D. Pohl, “Combined aperture SNOM/PTSM: best of both worlds?” Ultramicroscopy 57, 228–234 (1995).
    [CrossRef]
  18. D. Tsai, J. Kovacs, M. Moskovits, “Applications of apertured photon scanning tunneling microscopy (APSTM),” Ultramicroscopy 57, 130–140 (1995).
    [CrossRef]
  19. S. Takahashi, T. Fujimoto, K. Kato, I. Kojima, “High-resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
    [CrossRef]
  20. G. A. Larson, C. C. Sung, “Imaging of a sphere on a dielectric surface with scanning tunneling photon microscopy,” Nucl. Instrum. Methods Phy. Res. B 96, 478–482 (1995).
    [CrossRef]
  21. T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, L1302–L1304 (1992).
    [CrossRef]
  22. M. Barinaga, “The telomerase picture fills in,” Science 276, 528–529 (1997).
    [CrossRef] [PubMed]

1997 (2)

S. Takahashi, T. Fujimoto, K. Kato, I. Kojima, “High-resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[CrossRef]

M. Barinaga, “The telomerase picture fills in,” Science 276, 528–529 (1997).
[CrossRef] [PubMed]

1995 (4)

G. A. Larson, C. C. Sung, “Imaging of a sphere on a dielectric surface with scanning tunneling photon microscopy,” Nucl. Instrum. Methods Phy. Res. B 96, 478–482 (1995).
[CrossRef]

M. H. P. Moers, A. G. T. Ruiter, A. Jalocha, N. F. van Hulst, “Detection of fluorescence in situ hybridization on human metaphase chromosomes by near-field scanning optical microscopy,” Ultramicroscopy 61, 279–283 (1995).
[CrossRef] [PubMed]

B. Hecht, H. Heinzelmann, D. Pohl, “Combined aperture SNOM/PTSM: best of both worlds?” Ultramicroscopy 57, 228–234 (1995).
[CrossRef]

D. Tsai, J. Kovacs, M. Moskovits, “Applications of apertured photon scanning tunneling microscopy (APSTM),” Ultramicroscopy 57, 130–140 (1995).
[CrossRef]

1994 (3)

J. P. Fillard, M. Castagne, C. Prioleau, E. Baudry, P. Gall, J. Bonnafe, “Photon tunneling from semiconductor surfaces to atomic force microscopy probes,” Mater. Sci. Eng. B 28, 493–496 (1994);R. L. Williamson, C. J. Binks, M. J. Miles, “Scanning tunnelling optical microscopy—breaking a resolution barrier?” Ultramicroscopy 57, 235–240 (1995).
[CrossRef]

F. de Fornel, P. M. Adam, L. Salomon, J. P. Goudonnet, P. Guérin, “Effect of coherence of the source on the images obtained with a photon scanning tunneling microscope,” Opt. Lett. 19, 1082–1084 (1994).
[CrossRef] [PubMed]

A. J. Meixner, M. A. Bopp, G. Tarrach, “Direct measurement of standing evanescent waves with a photon-scanning tunneling microscope,” Appl. Opt. 33, 7995–8000 (1994).
[CrossRef] [PubMed]

1993 (2)

S. L. Sharp, R. J. Warmack, J. P. Goudonnet, I. Lee, T. L. Ferrell, “Spectroscopy and imaging using the photon scanning-tunneling microscope,” Acc. Chem. Res. 26, 377–382 (1993).
[CrossRef]

I. Lee, T. Thundat, R. J. Warmack, D. P. Allison, T. L. Ferrell, L. Tkachuk, G. D. Griffin, “Atomic force microscopy and photon scanning tunneling microscopy of liposomes and filtration membrane,” Bull. Am. Phys. Soc. 38(1), 118 (1993).

1992 (2)

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, L1302–L1304 (1992).
[CrossRef]

T. L. Ferrell, S. L. Sharp, R. J. Warmack, “Progress in photon scanning-tunneling microscopy (PSTM),” Ultramicroscopy 42–44, 408–415 (1992).
[CrossRef]

1991 (2)

T. L. Ferrell, J. P. Goudonnet, R. C. Reddick, S. H. Sharp, R. J. Warmack, “The photon scanning tunneling microscope,” J. Vac. Sci. Technol. B 9(2), 525–530 (1991).
[CrossRef]

J. P. Goudonnet, T. L. Ferrell, “La microscopie à effet tunnel photonique,” Spectra 2000 155, 39–42 (1991).

1990 (3)

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61(12), 3669–3677 (1990).
[CrossRef]

M. A. Paesler, P. J. Moyer, C. J. Jahncke, C. E. Johnson, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analytical photon scanning tunneling microscopy,” Phys. Rev. B 42(10), 6750–6753 (1990).
[CrossRef]

H. Pagnia, J. Radojewski, N. Sotnik, “Operation conditions of an optical STM,” Optik Stuttgart 86, 87–90 (1990).

1989 (2)

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “A new form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Adam, P. M.

Allison, D. P.

I. Lee, T. Thundat, R. J. Warmack, D. P. Allison, T. L. Ferrell, L. Tkachuk, G. D. Griffin, “Atomic force microscopy and photon scanning tunneling microscopy of liposomes and filtration membrane,” Bull. Am. Phys. Soc. 38(1), 118 (1993).

Barinaga, M.

M. Barinaga, “The telomerase picture fills in,” Science 276, 528–529 (1997).
[CrossRef] [PubMed]

Baudry, E.

J. P. Fillard, M. Castagne, C. Prioleau, E. Baudry, P. Gall, J. Bonnafe, “Photon tunneling from semiconductor surfaces to atomic force microscopy probes,” Mater. Sci. Eng. B 28, 493–496 (1994);R. L. Williamson, C. J. Binks, M. J. Miles, “Scanning tunnelling optical microscopy—breaking a resolution barrier?” Ultramicroscopy 57, 235–240 (1995).
[CrossRef]

Bonnafe, J.

J. P. Fillard, M. Castagne, C. Prioleau, E. Baudry, P. Gall, J. Bonnafe, “Photon tunneling from semiconductor surfaces to atomic force microscopy probes,” Mater. Sci. Eng. B 28, 493–496 (1994);R. L. Williamson, C. J. Binks, M. J. Miles, “Scanning tunnelling optical microscopy—breaking a resolution barrier?” Ultramicroscopy 57, 235–240 (1995).
[CrossRef]

Bopp, M. A.

Bourillot, E.

Castagne, M.

J. P. Fillard, M. Castagne, C. Prioleau, E. Baudry, P. Gall, J. Bonnafe, “Photon tunneling from semiconductor surfaces to atomic force microscopy probes,” Mater. Sci. Eng. B 28, 493–496 (1994);R. L. Williamson, C. J. Binks, M. J. Miles, “Scanning tunnelling optical microscopy—breaking a resolution barrier?” Ultramicroscopy 57, 235–240 (1995).
[CrossRef]

Chilcott, D. W.

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61(12), 3669–3677 (1990).
[CrossRef]

Courjon, D.

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

de Fornel, F.

Ferrell, T. L.

S. L. Sharp, R. J. Warmack, J. P. Goudonnet, I. Lee, T. L. Ferrell, “Spectroscopy and imaging using the photon scanning-tunneling microscope,” Acc. Chem. Res. 26, 377–382 (1993).
[CrossRef]

I. Lee, T. Thundat, R. J. Warmack, D. P. Allison, T. L. Ferrell, L. Tkachuk, G. D. Griffin, “Atomic force microscopy and photon scanning tunneling microscopy of liposomes and filtration membrane,” Bull. Am. Phys. Soc. 38(1), 118 (1993).

T. L. Ferrell, S. L. Sharp, R. J. Warmack, “Progress in photon scanning-tunneling microscopy (PSTM),” Ultramicroscopy 42–44, 408–415 (1992).
[CrossRef]

T. L. Ferrell, J. P. Goudonnet, R. C. Reddick, S. H. Sharp, R. J. Warmack, “The photon scanning tunneling microscope,” J. Vac. Sci. Technol. B 9(2), 525–530 (1991).
[CrossRef]

J. P. Goudonnet, T. L. Ferrell, “La microscopie à effet tunnel photonique,” Spectra 2000 155, 39–42 (1991).

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61(12), 3669–3677 (1990).
[CrossRef]

M. A. Paesler, P. J. Moyer, C. J. Jahncke, C. E. Johnson, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analytical photon scanning tunneling microscopy,” Phys. Rev. B 42(10), 6750–6753 (1990).
[CrossRef]

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “A new form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

I. Lee, R. J. Warmack, T. L. Ferrell, “Laser lithography by photon scanning tunneling microscopy,” in Proceedings of the Second International Conference on Laser Ablation, J. C. Miller, D. B. Geohegan, eds. (American Institute of Physics, New York, 1994), p. 544.

J. P. Goudonnet, E. Bourillot, P. M. Adam, F. de Fornel, L. Salomon, P. Vincent, M. Neviere, T. L. Ferrell, “Imaging of test quartz gratings with a photon scanning tunneling microscope. Experiment and theory,” J. Opt. Soc. Am. A 12, 1749–1764.

Fillard, J. P.

J. P. Fillard, M. Castagne, C. Prioleau, E. Baudry, P. Gall, J. Bonnafe, “Photon tunneling from semiconductor surfaces to atomic force microscopy probes,” Mater. Sci. Eng. B 28, 493–496 (1994);R. L. Williamson, C. J. Binks, M. J. Miles, “Scanning tunnelling optical microscopy—breaking a resolution barrier?” Ultramicroscopy 57, 235–240 (1995).
[CrossRef]

Fujimoto, T.

S. Takahashi, T. Fujimoto, K. Kato, I. Kojima, “High-resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[CrossRef]

Gall, P.

J. P. Fillard, M. Castagne, C. Prioleau, E. Baudry, P. Gall, J. Bonnafe, “Photon tunneling from semiconductor surfaces to atomic force microscopy probes,” Mater. Sci. Eng. B 28, 493–496 (1994);R. L. Williamson, C. J. Binks, M. J. Miles, “Scanning tunnelling optical microscopy—breaking a resolution barrier?” Ultramicroscopy 57, 235–240 (1995).
[CrossRef]

Goudonnet, J. P.

F. de Fornel, P. M. Adam, L. Salomon, J. P. Goudonnet, P. Guérin, “Effect of coherence of the source on the images obtained with a photon scanning tunneling microscope,” Opt. Lett. 19, 1082–1084 (1994).
[CrossRef] [PubMed]

S. L. Sharp, R. J. Warmack, J. P. Goudonnet, I. Lee, T. L. Ferrell, “Spectroscopy and imaging using the photon scanning-tunneling microscope,” Acc. Chem. Res. 26, 377–382 (1993).
[CrossRef]

T. L. Ferrell, J. P. Goudonnet, R. C. Reddick, S. H. Sharp, R. J. Warmack, “The photon scanning tunneling microscope,” J. Vac. Sci. Technol. B 9(2), 525–530 (1991).
[CrossRef]

J. P. Goudonnet, T. L. Ferrell, “La microscopie à effet tunnel photonique,” Spectra 2000 155, 39–42 (1991).

J. P. Goudonnet, E. Bourillot, P. M. Adam, F. de Fornel, L. Salomon, P. Vincent, M. Neviere, T. L. Ferrell, “Imaging of test quartz gratings with a photon scanning tunneling microscope. Experiment and theory,” J. Opt. Soc. Am. A 12, 1749–1764.

Griffin, G. D.

I. Lee, T. Thundat, R. J. Warmack, D. P. Allison, T. L. Ferrell, L. Tkachuk, G. D. Griffin, “Atomic force microscopy and photon scanning tunneling microscopy of liposomes and filtration membrane,” Bull. Am. Phys. Soc. 38(1), 118 (1993).

Guérin, P.

Hecht, B.

B. Hecht, H. Heinzelmann, D. Pohl, “Combined aperture SNOM/PTSM: best of both worlds?” Ultramicroscopy 57, 228–234 (1995).
[CrossRef]

Heinzelmann, H.

B. Hecht, H. Heinzelmann, D. Pohl, “Combined aperture SNOM/PTSM: best of both worlds?” Ultramicroscopy 57, 228–234 (1995).
[CrossRef]

Jahncke, C. J.

M. A. Paesler, P. J. Moyer, C. J. Jahncke, C. E. Johnson, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analytical photon scanning tunneling microscopy,” Phys. Rev. B 42(10), 6750–6753 (1990).
[CrossRef]

Jalocha, A.

M. H. P. Moers, A. G. T. Ruiter, A. Jalocha, N. F. van Hulst, “Detection of fluorescence in situ hybridization on human metaphase chromosomes by near-field scanning optical microscopy,” Ultramicroscopy 61, 279–283 (1995).
[CrossRef] [PubMed]

Jiang, S.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, L1302–L1304 (1992).
[CrossRef]

Johnson, C. E.

M. A. Paesler, P. J. Moyer, C. J. Jahncke, C. E. Johnson, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analytical photon scanning tunneling microscopy,” Phys. Rev. B 42(10), 6750–6753 (1990).
[CrossRef]

Kato, K.

S. Takahashi, T. Fujimoto, K. Kato, I. Kojima, “High-resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[CrossRef]

Kojima, I.

S. Takahashi, T. Fujimoto, K. Kato, I. Kojima, “High-resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[CrossRef]

Kovacs, J.

D. Tsai, J. Kovacs, M. Moskovits, “Applications of apertured photon scanning tunneling microscopy (APSTM),” Ultramicroscopy 57, 130–140 (1995).
[CrossRef]

Larson, G. A.

G. A. Larson, C. C. Sung, “Imaging of a sphere on a dielectric surface with scanning tunneling photon microscopy,” Nucl. Instrum. Methods Phy. Res. B 96, 478–482 (1995).
[CrossRef]

Lee, I.

I. Lee, T. Thundat, R. J. Warmack, D. P. Allison, T. L. Ferrell, L. Tkachuk, G. D. Griffin, “Atomic force microscopy and photon scanning tunneling microscopy of liposomes and filtration membrane,” Bull. Am. Phys. Soc. 38(1), 118 (1993).

S. L. Sharp, R. J. Warmack, J. P. Goudonnet, I. Lee, T. L. Ferrell, “Spectroscopy and imaging using the photon scanning-tunneling microscope,” Acc. Chem. Res. 26, 377–382 (1993).
[CrossRef]

I. Lee, R. J. Warmack, T. L. Ferrell, “Laser lithography by photon scanning tunneling microscopy,” in Proceedings of the Second International Conference on Laser Ablation, J. C. Miller, D. B. Geohegan, eds. (American Institute of Physics, New York, 1994), p. 544.

Meixner, A. J.

Moers, M. H. P.

M. H. P. Moers, A. G. T. Ruiter, A. Jalocha, N. F. van Hulst, “Detection of fluorescence in situ hybridization on human metaphase chromosomes by near-field scanning optical microscopy,” Ultramicroscopy 61, 279–283 (1995).
[CrossRef] [PubMed]

Moskovits, M.

D. Tsai, J. Kovacs, M. Moskovits, “Applications of apertured photon scanning tunneling microscopy (APSTM),” Ultramicroscopy 57, 130–140 (1995).
[CrossRef]

Moyer, P. J.

M. A. Paesler, P. J. Moyer, C. J. Jahncke, C. E. Johnson, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analytical photon scanning tunneling microscopy,” Phys. Rev. B 42(10), 6750–6753 (1990).
[CrossRef]

Neviere, M.

Ohsawa, H.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, L1302–L1304 (1992).
[CrossRef]

Ohtsu, M.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, L1302–L1304 (1992).
[CrossRef]

Paesler, M. A.

M. A. Paesler, P. J. Moyer, C. J. Jahncke, C. E. Johnson, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analytical photon scanning tunneling microscopy,” Phys. Rev. B 42(10), 6750–6753 (1990).
[CrossRef]

Pagnia, H.

H. Pagnia, J. Radojewski, N. Sotnik, “Operation conditions of an optical STM,” Optik Stuttgart 86, 87–90 (1990).

Pangaribuan, T.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, L1302–L1304 (1992).
[CrossRef]

Pohl, D.

B. Hecht, H. Heinzelmann, D. Pohl, “Combined aperture SNOM/PTSM: best of both worlds?” Ultramicroscopy 57, 228–234 (1995).
[CrossRef]

Prioleau, C.

J. P. Fillard, M. Castagne, C. Prioleau, E. Baudry, P. Gall, J. Bonnafe, “Photon tunneling from semiconductor surfaces to atomic force microscopy probes,” Mater. Sci. Eng. B 28, 493–496 (1994);R. L. Williamson, C. J. Binks, M. J. Miles, “Scanning tunnelling optical microscopy—breaking a resolution barrier?” Ultramicroscopy 57, 235–240 (1995).
[CrossRef]

Radojewski, J.

H. Pagnia, J. Radojewski, N. Sotnik, “Operation conditions of an optical STM,” Optik Stuttgart 86, 87–90 (1990).

Reddick, R. C.

T. L. Ferrell, J. P. Goudonnet, R. C. Reddick, S. H. Sharp, R. J. Warmack, “The photon scanning tunneling microscope,” J. Vac. Sci. Technol. B 9(2), 525–530 (1991).
[CrossRef]

M. A. Paesler, P. J. Moyer, C. J. Jahncke, C. E. Johnson, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analytical photon scanning tunneling microscopy,” Phys. Rev. B 42(10), 6750–6753 (1990).
[CrossRef]

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61(12), 3669–3677 (1990).
[CrossRef]

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “A new form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Ruiter, A. G. T.

M. H. P. Moers, A. G. T. Ruiter, A. Jalocha, N. F. van Hulst, “Detection of fluorescence in situ hybridization on human metaphase chromosomes by near-field scanning optical microscopy,” Ultramicroscopy 61, 279–283 (1995).
[CrossRef] [PubMed]

Salomon, L.

Sarayeddine, K.

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Sharp, S. H.

T. L. Ferrell, J. P. Goudonnet, R. C. Reddick, S. H. Sharp, R. J. Warmack, “The photon scanning tunneling microscope,” J. Vac. Sci. Technol. B 9(2), 525–530 (1991).
[CrossRef]

Sharp, S. L.

S. L. Sharp, R. J. Warmack, J. P. Goudonnet, I. Lee, T. L. Ferrell, “Spectroscopy and imaging using the photon scanning-tunneling microscope,” Acc. Chem. Res. 26, 377–382 (1993).
[CrossRef]

T. L. Ferrell, S. L. Sharp, R. J. Warmack, “Progress in photon scanning-tunneling microscopy (PSTM),” Ultramicroscopy 42–44, 408–415 (1992).
[CrossRef]

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61(12), 3669–3677 (1990).
[CrossRef]

Sotnik, N.

H. Pagnia, J. Radojewski, N. Sotnik, “Operation conditions of an optical STM,” Optik Stuttgart 86, 87–90 (1990).

Spajer, M.

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Sung, C. C.

G. A. Larson, C. C. Sung, “Imaging of a sphere on a dielectric surface with scanning tunneling photon microscopy,” Nucl. Instrum. Methods Phy. Res. B 96, 478–482 (1995).
[CrossRef]

Takahashi, S.

S. Takahashi, T. Fujimoto, K. Kato, I. Kojima, “High-resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[CrossRef]

Tarrach, G.

Thundat, T.

I. Lee, T. Thundat, R. J. Warmack, D. P. Allison, T. L. Ferrell, L. Tkachuk, G. D. Griffin, “Atomic force microscopy and photon scanning tunneling microscopy of liposomes and filtration membrane,” Bull. Am. Phys. Soc. 38(1), 118 (1993).

Tkachuk, L.

I. Lee, T. Thundat, R. J. Warmack, D. P. Allison, T. L. Ferrell, L. Tkachuk, G. D. Griffin, “Atomic force microscopy and photon scanning tunneling microscopy of liposomes and filtration membrane,” Bull. Am. Phys. Soc. 38(1), 118 (1993).

Tsai, D.

D. Tsai, J. Kovacs, M. Moskovits, “Applications of apertured photon scanning tunneling microscopy (APSTM),” Ultramicroscopy 57, 130–140 (1995).
[CrossRef]

van Hulst, N. F.

M. H. P. Moers, A. G. T. Ruiter, A. Jalocha, N. F. van Hulst, “Detection of fluorescence in situ hybridization on human metaphase chromosomes by near-field scanning optical microscopy,” Ultramicroscopy 61, 279–283 (1995).
[CrossRef] [PubMed]

Vincent, P.

Warmack, R. J.

S. L. Sharp, R. J. Warmack, J. P. Goudonnet, I. Lee, T. L. Ferrell, “Spectroscopy and imaging using the photon scanning-tunneling microscope,” Acc. Chem. Res. 26, 377–382 (1993).
[CrossRef]

I. Lee, T. Thundat, R. J. Warmack, D. P. Allison, T. L. Ferrell, L. Tkachuk, G. D. Griffin, “Atomic force microscopy and photon scanning tunneling microscopy of liposomes and filtration membrane,” Bull. Am. Phys. Soc. 38(1), 118 (1993).

T. L. Ferrell, S. L. Sharp, R. J. Warmack, “Progress in photon scanning-tunneling microscopy (PSTM),” Ultramicroscopy 42–44, 408–415 (1992).
[CrossRef]

T. L. Ferrell, J. P. Goudonnet, R. C. Reddick, S. H. Sharp, R. J. Warmack, “The photon scanning tunneling microscope,” J. Vac. Sci. Technol. B 9(2), 525–530 (1991).
[CrossRef]

M. A. Paesler, P. J. Moyer, C. J. Jahncke, C. E. Johnson, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analytical photon scanning tunneling microscopy,” Phys. Rev. B 42(10), 6750–6753 (1990).
[CrossRef]

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61(12), 3669–3677 (1990).
[CrossRef]

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “A new form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

I. Lee, R. J. Warmack, T. L. Ferrell, “Laser lithography by photon scanning tunneling microscopy,” in Proceedings of the Second International Conference on Laser Ablation, J. C. Miller, D. B. Geohegan, eds. (American Institute of Physics, New York, 1994), p. 544.

Yamada, K.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, L1302–L1304 (1992).
[CrossRef]

Acc. Chem. Res. (1)

S. L. Sharp, R. J. Warmack, J. P. Goudonnet, I. Lee, T. L. Ferrell, “Spectroscopy and imaging using the photon scanning-tunneling microscope,” Acc. Chem. Res. 26, 377–382 (1993).
[CrossRef]

Appl. Opt. (1)

Bull. Am. Phys. Soc. (1)

I. Lee, T. Thundat, R. J. Warmack, D. P. Allison, T. L. Ferrell, L. Tkachuk, G. D. Griffin, “Atomic force microscopy and photon scanning tunneling microscopy of liposomes and filtration membrane,” Bull. Am. Phys. Soc. 38(1), 118 (1993).

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

T. L. Ferrell, J. P. Goudonnet, R. C. Reddick, S. H. Sharp, R. J. Warmack, “The photon scanning tunneling microscope,” J. Vac. Sci. Technol. B 9(2), 525–530 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, L1302–L1304 (1992).
[CrossRef]

Mater. Sci. Eng. B (1)

J. P. Fillard, M. Castagne, C. Prioleau, E. Baudry, P. Gall, J. Bonnafe, “Photon tunneling from semiconductor surfaces to atomic force microscopy probes,” Mater. Sci. Eng. B 28, 493–496 (1994);R. L. Williamson, C. J. Binks, M. J. Miles, “Scanning tunnelling optical microscopy—breaking a resolution barrier?” Ultramicroscopy 57, 235–240 (1995).
[CrossRef]

Nanotechnology (1)

S. Takahashi, T. Fujimoto, K. Kato, I. Kojima, “High-resolution photon scanning tunneling microscope,” Nanotechnology 8, A54–A57 (1997).
[CrossRef]

Nucl. Instrum. Methods Phy. Res. B (1)

G. A. Larson, C. C. Sung, “Imaging of a sphere on a dielectric surface with scanning tunneling photon microscopy,” Nucl. Instrum. Methods Phy. Res. B 96, 478–482 (1995).
[CrossRef]

Opt. Commun. (1)

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Opt. Lett. (1)

Optik Stuttgart (1)

H. Pagnia, J. Radojewski, N. Sotnik, “Operation conditions of an optical STM,” Optik Stuttgart 86, 87–90 (1990).

Phys. Rev. B (2)

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “A new form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

M. A. Paesler, P. J. Moyer, C. J. Jahncke, C. E. Johnson, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analytical photon scanning tunneling microscopy,” Phys. Rev. B 42(10), 6750–6753 (1990).
[CrossRef]

Rev. Sci. Instrum. (1)

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61(12), 3669–3677 (1990).
[CrossRef]

Science (1)

M. Barinaga, “The telomerase picture fills in,” Science 276, 528–529 (1997).
[CrossRef] [PubMed]

Spectra 2000 (1)

J. P. Goudonnet, T. L. Ferrell, “La microscopie à effet tunnel photonique,” Spectra 2000 155, 39–42 (1991).

Ultramicroscopy (4)

T. L. Ferrell, S. L. Sharp, R. J. Warmack, “Progress in photon scanning-tunneling microscopy (PSTM),” Ultramicroscopy 42–44, 408–415 (1992).
[CrossRef]

M. H. P. Moers, A. G. T. Ruiter, A. Jalocha, N. F. van Hulst, “Detection of fluorescence in situ hybridization on human metaphase chromosomes by near-field scanning optical microscopy,” Ultramicroscopy 61, 279–283 (1995).
[CrossRef] [PubMed]

B. Hecht, H. Heinzelmann, D. Pohl, “Combined aperture SNOM/PTSM: best of both worlds?” Ultramicroscopy 57, 228–234 (1995).
[CrossRef]

D. Tsai, J. Kovacs, M. Moskovits, “Applications of apertured photon scanning tunneling microscopy (APSTM),” Ultramicroscopy 57, 130–140 (1995).
[CrossRef]

Other (1)

I. Lee, R. J. Warmack, T. L. Ferrell, “Laser lithography by photon scanning tunneling microscopy,” in Proceedings of the Second International Conference on Laser Ablation, J. C. Miller, D. B. Geohegan, eds. (American Institute of Physics, New York, 1994), p. 544.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the PSTM. An optional spectroscopy attachment is shown to illustrate how it can be implemented. A quartz microscope slide bears the sample and is affixed to the plane surface of a quartz plano–cylindrical (CYL) lens with an index-matching gel. Total internal reflection is obtained at the sample surface, and the reflection is frustrated locally by the presence of the sharpened fiber-optic (FO) probe. The probe is rastered across the sample with a tubular piezoelectric scanner. The scanner is controlled electronically by a feedback circuit so as to maintain a constant current by raising and lowering the probe in accordance with the gap variation caused by the sample’s varying features. The voltages needed for this action during the raster are the signals that are processed into an image on the computer. Scans are typically carried out within a gap of 100 nm.

Fig. 2
Fig. 2

Scanning electron microscope image of a typical PSTM probe tip. The tip was pulled by a commercial tip puller with a quartz multimode optical fiber of 50 μm core diameter. The fiber is stripped to its core in the vicinity of the pull region (extending approximately 2 cm). A finer tip produces improved resolution at the sacrifice of signal intensity. Tips that are as fine as can be produced provide sufficient signal for incident laser light at 10 mW or greater. However, higher power lasers generally have greater fluctuations in intensity, and it is necessary to use an intensity stabilization system for such cases. Stabilization is also required whenever an incoherent source is used regardless of intensity as these sources have greater variations in output. The tip shown displays an aspect ratio that is suitable for guiding the photons with negligible loss within a distance of 1 μm, but retains a small acceptance angle. The smaller acceptance angles aid in the rejection of stray photons scattered out of the sample. The tip was used without any coating, although the probe sides that are well away from the tip region were coated with aluminum for some of the work at the shorter wavelengths to further reduce noise from stray photons.

Fig. 3
Fig. 3

Standard quartz replica holographic crossed grating imaged by the PSTM. The features of the grating are imperfect as would be expected on this scale, but the better features and the grating spacing are known from images taken by scanning electron microscopy and by atomic-force microcopy. The grid shown is 9 μm square. The vertical profile is 400 nm maximum to minimum, except the spikes that are due to the grid.

Fig. 4
Fig. 4

Large-scale PSTM image of the sample of human pancreatic cells. The lysing action on the cells is effective only in a small percentage of the cells. Thus it is necessary to search at large scale to find candidates for which the chromosomes are visible. In this image at least two of the cells appear to have been affected strongly by the treatment. Each cell is approximately 10 μm in diameter as revealed by the images and as known from conventional microscopy. The intact cell nucleus is known to be roughly 4 μm in diameter for a cell of 10-μm diameter, but the sizes vary. Imaging utilized a He–Ne laser source at 633-nm wavelength.

Fig. 5
Fig. 5

(a) PSTM image of single cell with salt crystals; (b) PSTM image of another single cell on the same sample after wash (showing removal of salt); (c) color-coded height profile of the PSTM data of a different cell on the same sample. The optical height is 200 nm from the quartz substrate, but the lower optical index of the cell relative to that of the quartz makes the decay length of the exponential signal longer and so distinguishes the optical height from the physical height. An accurate correction of the signal strength (ratio of exponentials) can be made over a region only for samples that are isotropic and homogeneous throughout the region. Imaging utilized a He–Ne laser source at 633-nm wavelength.

Fig. 6
Fig. 6

Three cells of slightly varying size are shown as imaged by the PSTM using a He–Cd laser. The three cells are intact; the smallest is approximately 6 μm in diameter and the largest is roughly 10 μm in its maximum dimension.

Fig. 7
Fig. 7

Two cells revealed by the PSTM in which one demonstrates a set of chromosomes localized in the nucleus (roughly 3 μm in diameter). The structures visible in the lysed cell are quite distinct and of the size and shape noted by other methods of imaging chromosomes, but there are other structures in the nucleus so that the chromosomes need to be distinguished by additional methods. The data contain the optical topographical information as brightness gradation.

Fig. 8
Fig. 8

Two views of a partially lysed, isolated cell approximately 8 μm in diameter. In (a) the cell is shown in intensity profile, whereas in (b) the same data are presented in three dimensions with a color-shaded profile. There is a substantial similarity of this image to the image of the partially lysed cell shown in Fig. 7 in an image of adjacent cells. This would be expected based on the fact that the chromosomes are identical, but the lysing action is incomplete.

Fig. 9
Fig. 9

PSTM image of a more thoroughly lysed cell indicating chromosomes released. (a) The brightness profile is shown with two different chromosomes being most evident in the upper right-hand portion. (b) The same data are shown in three dimensions as a colorized height image. These images were obtained with the He–Cd laser, but some line scan noise is evident in the data in the form of streaks. Nonetheless, the lateral size and shapes are similar to what is observed in fluorescent microscopy, and it is evident that the reduction of the noise would likely reveal valuable optical topographical details.

Fig. 10
Fig. 10

PSTM image of cells (8–9 μm in diameter) in water. In this case the angle of incidence of the internally reflected light had to be increased because of the increased value of the critical angle. The resulting increase in spot size produced a decreased intensity and a noisier image. We took no measures to reduce the noise for this image, but the noise reduction made possible by intensity stabilization would be of obvious help.

Fig. 11
Fig. 11

Images of cells (8–10 μm in diameter) at two different wavelengths. (a) The 633-nm wavelength photons of a He–Ne laser were used to image the cells shown here in the presence of a few salt crystals. (b) Nearly the same region of the sample as in (a) imaged with the 442-nm line of the He–Cd laser. In (b) the resolution is improved as would be expected because of the shorter decay length, although we observed in a sequence of such images more noise because of the relatively larger intensity fluctuations exhibited by the He–Cd laser.

Metrics