Abstract

Photon diffusion theory was used to model photobleaching and tissue necrosis resulting from broad-beam therapeutic light irradiation of tissue containing a photosensitizer. The photosensitizer fluorescence signal at the tissue surface was simulated with both broad-beam and pencil-beam excitation. The relationship between the decreasing fluorescence signal and the increasing depth of tissue photodynamic damage during treatment was examined. By analyzing spatially resolved fluorescence measured at the tissue surface in terms of an equivalent virtual point or planar source of fluorescence within the tissue, predictions of necrosis depth that are insensitive to a range of initial treatment parameters were shown to be possible. Preliminary measurements in tissue-simulating phantoms supported the main theoretical findings. The potential value and feasibility of this technique for photodynamic therapy dosimetry are discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (45)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription