Abstract

Photothermal phase-shift signals in a flowing medium have been observed and found to be consistent with the theoretical predictions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, Proceedings of the Ninth International Conference on Photoacoustic and Photothermal Phenomena, Progress in Natural Science, Supplement to Vol. 6 (Taylor & Francis, Washington, D.C., 1996). See also, Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Elsevier, New York, 1992), Vol. 1 and other volumes in this series.
  2. See, for example, R. Gupta, “The theory of photothermal effect in fluids,” in Photothermal Investigations of Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1988).
  3. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
    [CrossRef] [PubMed]
  4. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
    [CrossRef]
  5. For a review, see H. L. Fang, R. L. Swofford, “The thermal lens in absorption spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983).
  6. R. Vyas, R. Gupta, “Photothermal lensing spectroscopy in a flowing medium: theory,” Appl. Opt. 27, 4701–4711 (1988).
    [CrossRef] [PubMed]
  7. J. Stone, “Thermooptical technique for the measurement of absorption loss spectrum in liquids,” Appl. Opt. 12, 1828–1830 (1973).
    [CrossRef] [PubMed]
  8. C. C. Davis, “Trace detection of gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515–518 (1980).
    [CrossRef]
  9. C. C. Davis, S. J. Petuchowski, “Phase fluctuation optical heterodyne spectroscopy of gases,” Appl. Opt. 20, 2539–2554 (1981).
    [CrossRef] [PubMed]
  10. C. C. Davis, “Radial laser-induced soundwave propagation and vibrational relaxation in carbon dioxide,” IEEE J. Quantum Electron. QE-18, 999–1003 (1982).
    [CrossRef]
  11. A. J. Campillo, H.-B. Lin, C. J. Dodge, C. C. Davis, “Stark-effect-modulated phase-fluctuation optical heterodyne interferometer for trace-gas analysis,” Opt. Lett. 5, 424–426 (1980);S. J. Petuchowski, C. C. Davis, “Selective trace detection of asymmetric rotor molecules by stark-modulated phase fluctuation optical heterodyne spectroscopy,” Opt. Commun. 38, 26–30 (1981).
    [CrossRef] [PubMed]
  12. H.-B. Lin, A. J. Campillo, “Photothermal aerosol absorption spectroscopy,” Appl. Opt. 24, 422–433 (1985);D. U. Fluckiger, H.-B. Lin, W. H. Marlow, “Composition measurement of aerosols of submicrometer particles by phase fluctuation absorption spectroscopy,” Appl. Opt. 24, 1668–1681 (1985).
    [CrossRef] [PubMed]
  13. W.-K. Lee, A. Gungor, P.-T. Ho, C. C. Davis, “Direct measurement of dilute dye solution quantum yield by photothermal laser heterodyne interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
    [CrossRef]
  14. M. L. Swicord, C. C. Davis, “An optical method for investigating the microwave absorption characteristics of DNA and other biomolecules in solutions,” Bioelectromagnetics 4, 21–42 (1983).
    [CrossRef]
  15. A. J. Campillo, S. J. Petuchowski, C. C. Davis, H.-B. Lin, “Fabry-Perot photothermal trace detection,” Appl. Phys. Lett. 41, 327–329 (1982).
    [CrossRef]
  16. S. V. Ignat’ev, Yu. I. Korolev, M. A. Novikov, A. E. Rozental, “Photothermal method of measuring weak absorption in a polarizing interferometer,” J. Appl. Spectrosc. 50, 503–508 (1989).
    [CrossRef]
  17. M. Muller, S. Basum, S. Glaser, K. F. Renk, “Study of submillimeter absorptivity of high Tc superconductors by photothermal interference spectroscopy,” Appl. Phys. Lett. 59, 3476–3478 (1991).
    [CrossRef]
  18. W. Faubel, B. S. Seidel, H. J. Ache, “Trace analysis of water pollutants by photothermal phase shift spectroscopy with an integrated microinterferometer,” Opt. Eng. 35, 3555–3561 (1996).
    [CrossRef]
  19. B. Monson, R. Vyas, R. Gupta, “Pulsed and cw photothermal phase-shift spectroscopy in a fluid medium,” Appl. Opt. 28, 2554–2560 (1989).
    [CrossRef] [PubMed]
  20. See, for example, J. A. Sell, “Fluid velocimetry using the photothermal deflection effect,” in Photothermal Investigations of Solids in Fluids,” J. A. Sell, ed. (Academic, New York, 1989).
  21. See, for example, R. Gupta, “Combustion diagnostics by photothermal deflection spectroscopy,” in Photothermal Investigations of Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1989).

1996 (1)

W. Faubel, B. S. Seidel, H. J. Ache, “Trace analysis of water pollutants by photothermal phase shift spectroscopy with an integrated microinterferometer,” Opt. Eng. 35, 3555–3561 (1996).
[CrossRef]

1991 (1)

M. Muller, S. Basum, S. Glaser, K. F. Renk, “Study of submillimeter absorptivity of high Tc superconductors by photothermal interference spectroscopy,” Appl. Phys. Lett. 59, 3476–3478 (1991).
[CrossRef]

1989 (2)

B. Monson, R. Vyas, R. Gupta, “Pulsed and cw photothermal phase-shift spectroscopy in a fluid medium,” Appl. Opt. 28, 2554–2560 (1989).
[CrossRef] [PubMed]

S. V. Ignat’ev, Yu. I. Korolev, M. A. Novikov, A. E. Rozental, “Photothermal method of measuring weak absorption in a polarizing interferometer,” J. Appl. Spectrosc. 50, 503–508 (1989).
[CrossRef]

1988 (1)

1985 (2)

1983 (1)

M. L. Swicord, C. C. Davis, “An optical method for investigating the microwave absorption characteristics of DNA and other biomolecules in solutions,” Bioelectromagnetics 4, 21–42 (1983).
[CrossRef]

1982 (2)

A. J. Campillo, S. J. Petuchowski, C. C. Davis, H.-B. Lin, “Fabry-Perot photothermal trace detection,” Appl. Phys. Lett. 41, 327–329 (1982).
[CrossRef]

C. C. Davis, “Radial laser-induced soundwave propagation and vibrational relaxation in carbon dioxide,” IEEE J. Quantum Electron. QE-18, 999–1003 (1982).
[CrossRef]

1981 (2)

1980 (2)

1973 (1)

1965 (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Ache, H. J.

W. Faubel, B. S. Seidel, H. J. Ache, “Trace analysis of water pollutants by photothermal phase shift spectroscopy with an integrated microinterferometer,” Opt. Eng. 35, 3555–3561 (1996).
[CrossRef]

Amer, N. M.

Basum, S.

M. Muller, S. Basum, S. Glaser, K. F. Renk, “Study of submillimeter absorptivity of high Tc superconductors by photothermal interference spectroscopy,” Appl. Phys. Lett. 59, 3476–3478 (1991).
[CrossRef]

Boccara, A. C.

Campillo, A. J.

Davis, C. C.

W.-K. Lee, A. Gungor, P.-T. Ho, C. C. Davis, “Direct measurement of dilute dye solution quantum yield by photothermal laser heterodyne interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

M. L. Swicord, C. C. Davis, “An optical method for investigating the microwave absorption characteristics of DNA and other biomolecules in solutions,” Bioelectromagnetics 4, 21–42 (1983).
[CrossRef]

A. J. Campillo, S. J. Petuchowski, C. C. Davis, H.-B. Lin, “Fabry-Perot photothermal trace detection,” Appl. Phys. Lett. 41, 327–329 (1982).
[CrossRef]

C. C. Davis, “Radial laser-induced soundwave propagation and vibrational relaxation in carbon dioxide,” IEEE J. Quantum Electron. QE-18, 999–1003 (1982).
[CrossRef]

C. C. Davis, S. J. Petuchowski, “Phase fluctuation optical heterodyne spectroscopy of gases,” Appl. Opt. 20, 2539–2554 (1981).
[CrossRef] [PubMed]

A. J. Campillo, H.-B. Lin, C. J. Dodge, C. C. Davis, “Stark-effect-modulated phase-fluctuation optical heterodyne interferometer for trace-gas analysis,” Opt. Lett. 5, 424–426 (1980);S. J. Petuchowski, C. C. Davis, “Selective trace detection of asymmetric rotor molecules by stark-modulated phase fluctuation optical heterodyne spectroscopy,” Opt. Commun. 38, 26–30 (1981).
[CrossRef] [PubMed]

C. C. Davis, “Trace detection of gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515–518 (1980).
[CrossRef]

Dodge, C. J.

Fang, H. L.

For a review, see H. L. Fang, R. L. Swofford, “The thermal lens in absorption spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983).

Faubel, W.

W. Faubel, B. S. Seidel, H. J. Ache, “Trace analysis of water pollutants by photothermal phase shift spectroscopy with an integrated microinterferometer,” Opt. Eng. 35, 3555–3561 (1996).
[CrossRef]

Fournier, D.

Glaser, S.

M. Muller, S. Basum, S. Glaser, K. F. Renk, “Study of submillimeter absorptivity of high Tc superconductors by photothermal interference spectroscopy,” Appl. Phys. Lett. 59, 3476–3478 (1991).
[CrossRef]

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Gungor, A.

W.-K. Lee, A. Gungor, P.-T. Ho, C. C. Davis, “Direct measurement of dilute dye solution quantum yield by photothermal laser heterodyne interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

Gupta, R.

B. Monson, R. Vyas, R. Gupta, “Pulsed and cw photothermal phase-shift spectroscopy in a fluid medium,” Appl. Opt. 28, 2554–2560 (1989).
[CrossRef] [PubMed]

R. Vyas, R. Gupta, “Photothermal lensing spectroscopy in a flowing medium: theory,” Appl. Opt. 27, 4701–4711 (1988).
[CrossRef] [PubMed]

See, for example, R. Gupta, “The theory of photothermal effect in fluids,” in Photothermal Investigations of Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1988).

See, for example, R. Gupta, “Combustion diagnostics by photothermal deflection spectroscopy,” in Photothermal Investigations of Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1989).

Ho, P.-T.

W.-K. Lee, A. Gungor, P.-T. Ho, C. C. Davis, “Direct measurement of dilute dye solution quantum yield by photothermal laser heterodyne interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

Ignat’ev, S. V.

S. V. Ignat’ev, Yu. I. Korolev, M. A. Novikov, A. E. Rozental, “Photothermal method of measuring weak absorption in a polarizing interferometer,” J. Appl. Spectrosc. 50, 503–508 (1989).
[CrossRef]

Jackson, W. B.

Korolev, Yu. I.

S. V. Ignat’ev, Yu. I. Korolev, M. A. Novikov, A. E. Rozental, “Photothermal method of measuring weak absorption in a polarizing interferometer,” J. Appl. Spectrosc. 50, 503–508 (1989).
[CrossRef]

Lee, W.-K.

W.-K. Lee, A. Gungor, P.-T. Ho, C. C. Davis, “Direct measurement of dilute dye solution quantum yield by photothermal laser heterodyne interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Lin, H.-B.

Monson, B.

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Muller, M.

M. Muller, S. Basum, S. Glaser, K. F. Renk, “Study of submillimeter absorptivity of high Tc superconductors by photothermal interference spectroscopy,” Appl. Phys. Lett. 59, 3476–3478 (1991).
[CrossRef]

Novikov, M. A.

S. V. Ignat’ev, Yu. I. Korolev, M. A. Novikov, A. E. Rozental, “Photothermal method of measuring weak absorption in a polarizing interferometer,” J. Appl. Spectrosc. 50, 503–508 (1989).
[CrossRef]

Petuchowski, S. J.

A. J. Campillo, S. J. Petuchowski, C. C. Davis, H.-B. Lin, “Fabry-Perot photothermal trace detection,” Appl. Phys. Lett. 41, 327–329 (1982).
[CrossRef]

C. C. Davis, S. J. Petuchowski, “Phase fluctuation optical heterodyne spectroscopy of gases,” Appl. Opt. 20, 2539–2554 (1981).
[CrossRef] [PubMed]

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Renk, K. F.

M. Muller, S. Basum, S. Glaser, K. F. Renk, “Study of submillimeter absorptivity of high Tc superconductors by photothermal interference spectroscopy,” Appl. Phys. Lett. 59, 3476–3478 (1991).
[CrossRef]

Rozental, A. E.

S. V. Ignat’ev, Yu. I. Korolev, M. A. Novikov, A. E. Rozental, “Photothermal method of measuring weak absorption in a polarizing interferometer,” J. Appl. Spectrosc. 50, 503–508 (1989).
[CrossRef]

Seidel, B. S.

W. Faubel, B. S. Seidel, H. J. Ache, “Trace analysis of water pollutants by photothermal phase shift spectroscopy with an integrated microinterferometer,” Opt. Eng. 35, 3555–3561 (1996).
[CrossRef]

Sell, J. A.

See, for example, J. A. Sell, “Fluid velocimetry using the photothermal deflection effect,” in Photothermal Investigations of Solids in Fluids,” J. A. Sell, ed. (Academic, New York, 1989).

Stone, J.

Swicord, M. L.

M. L. Swicord, C. C. Davis, “An optical method for investigating the microwave absorption characteristics of DNA and other biomolecules in solutions,” Bioelectromagnetics 4, 21–42 (1983).
[CrossRef]

Swofford, R. L.

For a review, see H. L. Fang, R. L. Swofford, “The thermal lens in absorption spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983).

Vyas, R.

Whinnery, J. R.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (4)

M. Muller, S. Basum, S. Glaser, K. F. Renk, “Study of submillimeter absorptivity of high Tc superconductors by photothermal interference spectroscopy,” Appl. Phys. Lett. 59, 3476–3478 (1991).
[CrossRef]

C. C. Davis, “Trace detection of gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515–518 (1980).
[CrossRef]

W.-K. Lee, A. Gungor, P.-T. Ho, C. C. Davis, “Direct measurement of dilute dye solution quantum yield by photothermal laser heterodyne interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

A. J. Campillo, S. J. Petuchowski, C. C. Davis, H.-B. Lin, “Fabry-Perot photothermal trace detection,” Appl. Phys. Lett. 41, 327–329 (1982).
[CrossRef]

Bioelectromagnetics (1)

M. L. Swicord, C. C. Davis, “An optical method for investigating the microwave absorption characteristics of DNA and other biomolecules in solutions,” Bioelectromagnetics 4, 21–42 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. C. Davis, “Radial laser-induced soundwave propagation and vibrational relaxation in carbon dioxide,” IEEE J. Quantum Electron. QE-18, 999–1003 (1982).
[CrossRef]

J. Appl. Phys. (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

J. Appl. Spectrosc. (1)

S. V. Ignat’ev, Yu. I. Korolev, M. A. Novikov, A. E. Rozental, “Photothermal method of measuring weak absorption in a polarizing interferometer,” J. Appl. Spectrosc. 50, 503–508 (1989).
[CrossRef]

Opt. Eng. (1)

W. Faubel, B. S. Seidel, H. J. Ache, “Trace analysis of water pollutants by photothermal phase shift spectroscopy with an integrated microinterferometer,” Opt. Eng. 35, 3555–3561 (1996).
[CrossRef]

Opt. Lett. (1)

Other (5)

See, for example, J. A. Sell, “Fluid velocimetry using the photothermal deflection effect,” in Photothermal Investigations of Solids in Fluids,” J. A. Sell, ed. (Academic, New York, 1989).

See, for example, R. Gupta, “Combustion diagnostics by photothermal deflection spectroscopy,” in Photothermal Investigations of Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1989).

For a review, see H. L. Fang, R. L. Swofford, “The thermal lens in absorption spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983).

See, for example, Proceedings of the Ninth International Conference on Photoacoustic and Photothermal Phenomena, Progress in Natural Science, Supplement to Vol. 6 (Taylor & Francis, Washington, D.C., 1996). See also, Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Elsevier, New York, 1992), Vol. 1 and other volumes in this series.

See, for example, R. Gupta, “The theory of photothermal effect in fluids,” in Photothermal Investigations of Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic illustration of a typical PTPS experiment. The sample cell is placed in one arm of a Michelson interferometer. The pump beam passes through the cell either collinearly (solid line) or transversely (dotted line). (b) Intensity variation observed at the photodetector as a function of the phase difference (ϕ A - ϕ B ).

Fig. 2
Fig. 2

Pump and probe beam configurations for (a) transverse and (b) collinear geometries.

Fig. 3
Fig. 3

PTPS signals for transverse geometry and pulsed excitation for various values of the flow velocity v x and pump–probe distance x, as indicated on the diagram.

Fig. 4
Fig. 4

Theoretically predicted signals for pulsed excitation and transverse geometry corresponding to the experimental signals shown in Fig. 3. In this calculation parameters given in the text were used and V was set equal to 2.

Fig. 5
Fig. 5

Collinear PTPS signals for pulsed excitation and for values of v x and x given on the diagram.

Fig. 6
Fig. 6

Theoretically predicted signals for pulsed excitation and collinear geometry corresponding to the experimental curves shown in Fig. 5.

Fig. 7
Fig. 7

Root-mean-square phase-shift signals for cw (modulated at 32-Hz) excitation and transverse geometry for v x = 1 cm/s and v x = 17 cm/s as a function of the pump–probe separation x.

Fig. 8
Fig. 8

Theoretical predictions for cw excitation corresponding to the experimental signals shown in Fig. 7. The following parameters were used in this computation: P av = 1 W, a = 0.2 mm, α = 0.8 m-1, and V = 2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T r ,   t t = D 2 T r ,   t - v x T r ,   t x + 1 ρ C p   Q r ,   t ,
Q r ,   t = α I r ,   t = 2 α E 0 π a 2 t 0 exp - 2 r 2 / a 2 for   0 t t 0 0 for   t > t 0 .
Q r ,   t = 2 α P av π a 2 exp - 2 r 2 / a 2 1 + cos   ω t ,
I t = A 2 + B 2 + 2 AB   cos ϕ A - ϕ B - γ t .
γ x ,   y ,   t = 4 π λ n 0 - 1 T A path   T x ,   y ,   t d s ,
δ V L x ,   y ,   t = ½ V   sin 4 π λ n 0 - 1 l T A 2 α E 0 π t 0 ρ C p 0 t 0 exp - 2 x - v x t - τ 2 + y 2 / a 2 + 8 D t - τ a 2 + 8 D t - τ d τ ,
δ V L x ,   y ,   t = ½ V   sin 4 π λ n 0 - 1 l T A 2 α P av π ρ C p × 0 t 1 + cos   ω τ a 2 + 8 D t - τ   exp ( - 2 x - v x × t - τ 2 + y 2 / a 2 + 8 D t - τ ) d τ
δ V T x ,   t = ½ V   sin 4 π λ n 0 - 1 T A 2 α E 0 2 π t 0 ρ C p × 0 t 0 exp - 2 x - v x t - τ 2 / a 2 + 8 D t - τ a 2 + 8 D t - τ 1 / 2 d τ ,
δ V T x ,   t = ½ V   sin 4 π λ n 0 - 1 T A 2 α P av 2 π   ρ C p × 0 t 1 + cos   ω τ a 2 + 8 D t - τ 1 / 2 exp - 2 x - v x × t - τ 2 / a 2 + 8 D ( t - τ d τ

Metrics