Abstract

Backscatter of several Earth surfaces was characterized in the laboratory as a function of incidence angle with a focused continuous-wave 9.1-μm CO2 Doppler lidar for use as possible calibration targets. Some targets showed negligible angular dependence, while others showed a slight increase with decreasing angle. The Earth-surface signal measured over the complex Californian terrain during a 1995 NASA airborne mission compared well with laboratory data. Distributions of the Earth’s surface signal shows that the lidar efficiency can be estimated with a fair degree of accuracy, preferably with uniform Earth-surface targets during flight for airborne or space-based lidar.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
    [CrossRef]
  2. M. A. Jarzembski, V. Srivastava, E. W. McCaul, G. J. Jedlovec, R. J. Atkinson, R. F. Pueschel, D. R. Cutten, “Comparison of lidar backscatter with particle distribution and goes-7 data in Hurricane Juliette,” Geophys. Res. Lett. 24, 1063–1066 (1997).
    [CrossRef]
  3. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
    [CrossRef] [PubMed]
  4. R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
    [CrossRef] [PubMed]
  5. Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection,” Int. J. Remote Sens. 14, 21–52 (1993).
    [CrossRef]
  6. W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
    [CrossRef]
  7. M. J. Kavaya, G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” Proc. Soc. Photo-Opt. Instrum. Eng. 2214, 237–249 (1994).
  8. W. L. Wolfe, G. J. Zissis, The Infrared Handbook (1978), Chap. 3.
  9. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
    [CrossRef] [PubMed]
  10. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
    [CrossRef] [PubMed]
  11. R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar,” Appl. Opt. 23, 2510–2517 (1984).
    [CrossRef] [PubMed]
  12. M. A. Jarzembski, V. Srivastava, D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996).
    [CrossRef] [PubMed]
  13. J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
    [CrossRef] [PubMed]
  14. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
    [CrossRef]
  15. M. J. Kavaya, “The JPL lidar target calibration facility,” in Digest of Third Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1985), p. II.1.
  16. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. H. Smith, “hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  17. F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

1998 (1)

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

1997 (2)

M. A. Jarzembski, V. Srivastava, E. W. McCaul, G. J. Jedlovec, R. J. Atkinson, R. F. Pueschel, D. R. Cutten, “Comparison of lidar backscatter with particle distribution and goes-7 data in Hurricane Juliette,” Geophys. Res. Lett. 24, 1063–1066 (1997).
[CrossRef]

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (1)

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

1994 (2)

M. J. Kavaya, G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” Proc. Soc. Photo-Opt. Instrum. Eng. 2214, 237–249 (1994).

R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
[CrossRef] [PubMed]

1993 (1)

Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection,” Int. J. Remote Sens. 14, 21–52 (1993).
[CrossRef]

1990 (1)

1987 (1)

1984 (1)

1983 (1)

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

1971 (1)

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Anderson, J. R.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Atkinson, R. J.

M. A. Jarzembski, V. Srivastava, E. W. McCaul, G. J. Jedlovec, R. J. Atkinson, R. F. Pueschel, D. R. Cutten, “Comparison of lidar backscatter with particle distribution and goes-7 data in Hurricane Juliette,” Geophys. Res. Lett. 24, 1063–1066 (1997).
[CrossRef]

Atlas, R. M.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Baker, W. E.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Banta, R. M.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Barbe, A.

Bowdle, D. A.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
[CrossRef] [PubMed]

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Brown, L. R.

Brown, R. A.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Bufton, J. L.

Camy-Peyret, C.

Cavanaugh, J. F.

Chambers, D. M.

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Chudamani, S.

Clough, S. A.

F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Cupp, R. E.

Cutten, D. R.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

M. A. Jarzembski, V. Srivastava, E. W. McCaul, G. J. Jedlovec, R. J. Atkinson, R. F. Pueschel, D. R. Cutten, “Comparison of lidar backscatter with particle distribution and goes-7 data in Hurricane Juliette,” Geophys. Res. Lett. 24, 1063–1066 (1997).
[CrossRef]

Emmitt, G. D.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Flamant, P. H.

R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar,” Appl. Opt. 23, 2510–2517 (1984).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

Flaud, J.-M.

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Gamache, R. R.

Goldman, A.

Haner, D. A.

R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar,” Appl. Opt. 23, 2510–2517 (1984).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

Hardesty, R. M.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Holben, B. N.

Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection,” Int. J. Remote Sens. 14, 21–52 (1993).
[CrossRef]

Horrigan, F. A.

Howell, J. N.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Husson, N.

Jarzembski, M. A.

Jedlovec, G. J.

M. A. Jarzembski, V. Srivastava, E. W. McCaul, G. J. Jedlovec, R. J. Atkinson, R. F. Pueschel, D. R. Cutten, “Comparison of lidar backscatter with particle distribution and goes-7 data in Hurricane Juliette,” Geophys. Res. Lett. 24, 1063–1066 (1997).
[CrossRef]

Johnson, S. C.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Jones, W. D.

Kaufman, Y. J.

Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection,” Int. J. Remote Sens. 14, 21–52 (1993).
[CrossRef]

Kavaya, M. J.

M. J. Kavaya, G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” Proc. Soc. Photo-Opt. Instrum. Eng. 2214, 237–249 (1994).

R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar,” Appl. Opt. 23, 2510–2517 (1984).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

M. J. Kavaya, “The JPL lidar target calibration facility,” in Digest of Third Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1985), p. II.1.

Keller, V. W.

M. J. Kavaya, G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” Proc. Soc. Photo-Opt. Instrum. Eng. 2214, 237–249 (1994).

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Krishnamurti, T. N.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Lobl, E. S.

M. J. Kavaya, G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” Proc. Soc. Photo-Opt. Instrum. Eng. 2214, 237–249 (1994).

Lorenc, A. C.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

McCaul, E. W.

M. A. Jarzembski, V. Srivastava, E. W. McCaul, G. J. Jedlovec, R. J. Atkinson, R. F. Pueschel, D. R. Cutten, “Comparison of lidar backscatter with particle distribution and goes-7 data in Hurricane Juliette,” Geophys. Res. Lett. 24, 1063–1066 (1997).
[CrossRef]

McElroy, J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Menzies, R. T.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
[CrossRef] [PubMed]

R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar,” Appl. Opt. 23, 2510–2517 (1984).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

Miller, T. L.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Molinari, J. E.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Olivier, L. D.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Oppenheim, U. P.

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

Paegle, J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Pickett, H. M.

Post, M. J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
[CrossRef] [PubMed]

Poynter, R. L.

Pueschel, R. F.

M. A. Jarzembski, V. Srivastava, E. W. McCaul, G. J. Jedlovec, R. J. Atkinson, R. F. Pueschel, D. R. Cutten, “Comparison of lidar backscatter with particle distribution and goes-7 data in Hurricane Juliette,” Geophys. Res. Lett. 24, 1063–1066 (1997).
[CrossRef]

Rinsland, C. P.

Robertson, P.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Rothermel, J.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
[CrossRef] [PubMed]

M. J. Kavaya, G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” Proc. Soc. Photo-Opt. Instrum. Eng. 2214, 237–249 (1994).

Rothman, L. S.

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Smith, M. H.

Sonnenschein, C. M.

Spiers, G. D.

M. J. Kavaya, G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” Proc. Soc. Photo-Opt. Instrum. Eng. 2214, 237–249 (1994).

Spinhirne, J. D.

Srivastava, V.

Toth, R. A.

Tratt, D. M.

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
[CrossRef] [PubMed]

Appl. Opt. (9)

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[CrossRef] [PubMed]

R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
[CrossRef] [PubMed]

M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
[CrossRef] [PubMed]

C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
[CrossRef] [PubMed]

R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar,” Appl. Opt. 23, 2510–2517 (1984).
[CrossRef] [PubMed]

M. A. Jarzembski, V. Srivastava, D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996).
[CrossRef] [PubMed]

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. H. Smith, “hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Bull. Am. Meteorol. Soc. (2)

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Geophys. Res. Lett. (1)

M. A. Jarzembski, V. Srivastava, E. W. McCaul, G. J. Jedlovec, R. J. Atkinson, R. F. Pueschel, D. R. Cutten, “Comparison of lidar backscatter with particle distribution and goes-7 data in Hurricane Juliette,” Geophys. Res. Lett. 24, 1063–1066 (1997).
[CrossRef]

Int. J. Remote Sens. (1)

Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection,” Int. J. Remote Sens. 14, 21–52 (1993).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. J. Kavaya, G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” Proc. Soc. Photo-Opt. Instrum. Eng. 2214, 237–249 (1994).

Other (3)

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (1978), Chap. 3.

F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

M. J. Kavaya, “The JPL lidar target calibration facility,” in Digest of Third Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1985), p. II.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Laboratory schematic for backscatter measurement of simulated Earth-type (a) land surfaces and (b) wet surfaces. Airborne measurement scenario (c) of retrieval of an Earth-surface backscatter signal from the expanded cw-lidar beam during an aircraft roll.

Fig. 2
Fig. 2

Laboratory backscatter measurements as a function of angle of incidence φ with the NASA/MSFC 9.1-μm cw Doppler lidar from simulated Earth surfaces for (a) land-type targets and (b) wet-type targets.

Fig. 3
Fig. 3

Measured backscattered SNR as a function of range L for beach sand and pine HT’s and the (SND) calibrating HT.

Fig. 4
Fig. 4

1-s integrated cw-lidar spectral data taken with the digital signal processor of both an aerosol and an Earth-surface land backscatter signal at different Doppler-shift frequencies during an aircraft roll over Sacramento Valley near Willows, California, located at approximately 39° 25′ N. lat, 122° 15′ W. long.

Fig. 5
Fig. 5

Map of region of California showing the locations where different Earth-surface measurements were made as illustrated by different symbols.

Fig. 6
Fig. 6

Measured backscattered SNR normalized by transmission efficiency T for the various Earth surfaces shown in Fig. 5 with the 9.1-μm cw lidar along with comparison with lidar theory [Eqs. (1)–(3)] by use of lidar parameters cited in the text for four representative backscatter values of various Earth-surface types. Variability of Earth-surface backscatter at each location is depicted by the vertical line through each data point, which gives the range of SNREHT at a given distance, while variability in L is depicted by the horizontal line through each data point, which gives the range of L that is due to variability in both radar altitude and roll angle.

Fig. 7
Fig. 7

Histograms of measured SNR normalized by the transmission efficiency T and f(L) from the Earth’s surface at various locations as shown in Fig. 5: (a) Coastal Range Mountains northeast of Santa Cruz, California (solid square); (b) agricultural land over Sacramento Valley near Willows, California (open square); (c) eastern slopes of the Sierra Nevada Mountains (filled triangle); (d) San Jose metropolitan area only at L ∼ 950 m (open circle); and (e) Coastal Range Mountains east of Salinas, California (filled inverted triangle). Histograms of calculated lidar efficiency ηEHT from the respective Earth surfaces are shown in (f)–(j). The average ρEHT for each Earth-surface scenario as assessed from Fig. 6 is shown in the legend. The SND ηCHT = 0.12 ± 18% for this mission is shown within the bold vertical lines for comparison with ηEHT from different Earth surfaces.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SNR HT   =   η HT K HT T ρ HT ,
K HT = P π R 2 f L / Bh ν ,
f L = 1 / L 2 1 + π R 2 / λ L 2 1 - L / F 2 ,
SNR HT = η HT P π R 2 T ρ HT / Bh ν F 2 .

Metrics