Abstract

Periodically poled flux-grown KTiOPO4 was used for efficient extracavity 1064-nm Nd:YAG laser frequency doubling. A conversion efficiency exceeding 65% was obtained in Q-switched operation, and 1.34 W of average frequency-doubled power was generated with 2.2 W of mode-locked laser output. The conversion efficiency is approximately two times higher for periodically poled KTP than for conventional type II phase-matched KTP. The measurements indicate that periodically poled KTP is less susceptible to optical damage than type II KTP.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
    [CrossRef]
  2. W. L. Nighan, J. Cole, Th. M. Baer, “Diode pumped, multi axial mode, intracavity doubled laser,” U.S. patent5,446,749 (4February1994).
  3. M. Tsunekane, N. Taguchi, H. Inaba, “Elimination of chaos in a multilongitudinal-mode, diode-pumped, 6-W continuous-wave, intracavity-doubled Nd:YAG laser,” Opt. Lett. 22, 1000–1002 (1997).
    [CrossRef] [PubMed]
  4. A. Arie, G. Rosenman, A. Korenfeld, A. Skliar, M. Oron, M. Katz, D. Eger, “Efficient resonant frequency doubling of a cw Nd:YAG laser in bulk periodically poled KTiOPO4,” Opt. Lett. 23, 28–30 (1998).
    [CrossRef]
  5. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
    [CrossRef]
  6. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  7. H. Karlsson, F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
    [CrossRef]
  8. A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, E. Lebiush, G. Rosenman, A. Skliar, “Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP,” Opt. Lett. 22, 1598–1599 (1997).
    [CrossRef]
  9. Q. Chen, W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
    [CrossRef]
  10. W. Wiechmann, S. Kubota, T. Fukui, H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208–1210 (1993).
    [CrossRef] [PubMed]
  11. M. Taya, M. C. Bashaw, M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
    [CrossRef] [PubMed]

1998 (1)

1997 (4)

1996 (1)

1994 (1)

Q. Chen, W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

1993 (1)

1992 (1)

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[CrossRef]

1968 (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Anthon, D. W.

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[CrossRef]

Arie, A.

Baer, Th. M.

W. L. Nighan, J. Cole, Th. M. Baer, “Diode pumped, multi axial mode, intracavity doubled laser,” U.S. patent5,446,749 (4February1994).

Bashaw, M. C.

Batchko, R. G.

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Byer, R. L.

Chen, Q.

Q. Chen, W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Cole, J.

W. L. Nighan, J. Cole, Th. M. Baer, “Diode pumped, multi axial mode, intracavity doubled laser,” U.S. patent5,446,749 (4February1994).

Eger, D.

Englander, A.

Fejer, M. M.

Fukui, T.

Inaba, H.

Karlsson, H.

H. Karlsson, F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
[CrossRef]

Katz, M.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Korenfeld, A.

Kubota, S.

Laurell, F.

H. Karlsson, F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
[CrossRef]

Lavi, R.

Lebiush, E.

Masuda, H.

Miller, G. D.

Nighan, W. L.

W. L. Nighan, J. Cole, Th. M. Baer, “Diode pumped, multi axial mode, intracavity doubled laser,” U.S. patent5,446,749 (4February1994).

Oron, M.

Pier, T. J.

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[CrossRef]

Ressl, M. R.

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[CrossRef]

Risk, W. P.

Q. Chen, W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Rosenman, G.

Sipes, D. L.

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[CrossRef]

Skliar, A.

Taguchi, N.

Taya, M.

Tsunekane, M.

Tulloch, W. M.

Weise, D. R.

Wiechmann, W.

Appl. Phys. Lett. (1)

H. Karlsson, F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
[CrossRef]

Electron. Lett. (1)

Q. Chen, W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Opt. Lett. (6)

Other (1)

W. L. Nighan, J. Cole, Th. M. Baer, “Diode pumped, multi axial mode, intracavity doubled laser,” U.S. patent5,446,749 (4February1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SH intensity as a function of PP KTP temperature: points, experiment; solid curve, sinc2 function fit.

Fig. 2
Fig. 2

Measured SH average power (▲) and frequency-conversion efficiency (●) dependence on the average fundamental power for a mode-locked Nd:YAG laser. Solid curve, theoretical frequency-doubling efficiency that was calculated by taking the fundamental beam depletion into account.

Fig. 3
Fig. 3

Frequency-doubling efficiency normalized to the nonlinear crystal length as a function of the fundamental beam peak intensity: points, experiment; solid curves, calculations.

Fig. 4
Fig. 4

SH pulse energy dependence on the fundamental pulse energy for a Q-switched Nd:YAG laser.

Tables (1)

Tables Icon

Table 1 PP KTP Parameters obtained from Measurements with cw Nd:YAG Excitation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L eff = 5.566 λ 1 4 π Δ T n 2 T T 0 - n 1 T T 0 - α n 2 - n 1 ,

Metrics