Abstract

The observed dissociation of tetrakis rare-earth chromophores in rare-earth-doped organic polymers is reported, and a time-resolved spectroscopic technique is presented to determine quantitatively the fractional concentrations of different chromophore species in various solvents. Based on this technique, the equilibrium constants of tetrakis rare-earth chromophores in rare-earth-doped polymers are determined. Thus, the equilibrium constants for tetrakis rare-earth compounds of benzoyltrifluoroacetonate (BTF), for example, Sm(BTF)4P and Eu(BTF)4P in methyl methacrylate monomer, are K = 4.7 ± 0.5 × 10-4 M and K = 1.2 ± 0.5 × 10-4 M, respectively. In contrast, the tetrakis rare-earth compounds of hexafluoroacetylacetonate (HFA), for example, Sm(HFA)4Net4 and Eu(HFA)4Net4, are quite stable and show no evidence of dissociation. We further characterize the dissociation of several chromophore systems and discuss the influence such dissociation has on overall optical performance. The results enable determination of optimal doping concentrations as well as preferred rare-earth chromophore preparation and doped polymer fabrication procedures.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, M. J. F. Digonnet, ed., Rare Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993).
  2. C. Koeppen, S. Yamada, G. Jiang, A. F. Garito, “Rare earth organic complexes for amplification in polymer optical fibers and waveguides,” J. Opt. Soc. Am. B 14, 155–162 (1997).
    [CrossRef]
  3. See, for example, C. Koeppen, “Photonics studies: rare earth chromophores for polymer optical fiber and waveguide amplifiers,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1997) and references therein.
  4. T. Kaino, “Polymer optical fibers,” in Polymers for Lightwave and Integrated Optics, L. Hornak, ed. (Marcel Dekker, New York, 1992).
  5. R. F. Shi, C. Koeppen, G. Gang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3727 (1997).
    [CrossRef]
  6. T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, W. J. Randall, “The coordination chemistry of yttrium and the rare earth metal ions,” Chem. Rev. 65, 1–50 (1965).
    [CrossRef]
  7. R. G. Charles, A. Perotto, “Rare earth dibenzoylmethides preparation, dehydration and thermal stability,” J. Inorg. Nucl. Chem. 26, 373–376 (1964).
    [CrossRef]
  8. H. Bauer, J. Blanc, D. L. Ross, “Octacoordine chelates of lanthanides. Two series of compounds,” J. Am. Chem. Soc. 86, 5125–5131 (1964).
    [CrossRef]
  9. C. Brecher, H. Samelson, A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081–1096 (1965).
    [CrossRef]
  10. H. Samelson, C. Brecher, A. Lempicki, “Spectroscopy and coordination chemistry of europium chelate solutions: concentration and solvent effects,” J. Mol. Spectrosc. 19, 349–371 (1966).
    [CrossRef]
  11. C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
    [CrossRef]

1997

C. Koeppen, S. Yamada, G. Jiang, A. F. Garito, “Rare earth organic complexes for amplification in polymer optical fibers and waveguides,” J. Opt. Soc. Am. B 14, 155–162 (1997).
[CrossRef]

R. F. Shi, C. Koeppen, G. Gang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3727 (1997).
[CrossRef]

1977

C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

1966

H. Samelson, C. Brecher, A. Lempicki, “Spectroscopy and coordination chemistry of europium chelate solutions: concentration and solvent effects,” J. Mol. Spectrosc. 19, 349–371 (1966).
[CrossRef]

1965

C. Brecher, H. Samelson, A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081–1096 (1965).
[CrossRef]

T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, W. J. Randall, “The coordination chemistry of yttrium and the rare earth metal ions,” Chem. Rev. 65, 1–50 (1965).
[CrossRef]

1964

R. G. Charles, A. Perotto, “Rare earth dibenzoylmethides preparation, dehydration and thermal stability,” J. Inorg. Nucl. Chem. 26, 373–376 (1964).
[CrossRef]

H. Bauer, J. Blanc, D. L. Ross, “Octacoordine chelates of lanthanides. Two series of compounds,” J. Am. Chem. Soc. 86, 5125–5131 (1964).
[CrossRef]

Bauer, H.

H. Bauer, J. Blanc, D. L. Ross, “Octacoordine chelates of lanthanides. Two series of compounds,” J. Am. Chem. Soc. 86, 5125–5131 (1964).
[CrossRef]

Blanc, J.

H. Bauer, J. Blanc, D. L. Ross, “Octacoordine chelates of lanthanides. Two series of compounds,” J. Am. Chem. Soc. 86, 5125–5131 (1964).
[CrossRef]

Brecher, C.

H. Samelson, C. Brecher, A. Lempicki, “Spectroscopy and coordination chemistry of europium chelate solutions: concentration and solvent effects,” J. Mol. Spectrosc. 19, 349–371 (1966).
[CrossRef]

C. Brecher, H. Samelson, A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081–1096 (1965).
[CrossRef]

Charles, R. G.

R. G. Charles, A. Perotto, “Rare earth dibenzoylmethides preparation, dehydration and thermal stability,” J. Inorg. Nucl. Chem. 26, 373–376 (1964).
[CrossRef]

Feistel, G. R.

T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, W. J. Randall, “The coordination chemistry of yttrium and the rare earth metal ions,” Chem. Rev. 65, 1–50 (1965).
[CrossRef]

Ferrus, R.

T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, W. J. Randall, “The coordination chemistry of yttrium and the rare earth metal ions,” Chem. Rev. 65, 1–50 (1965).
[CrossRef]

Gang, G.

R. F. Shi, C. Koeppen, G. Gang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3727 (1997).
[CrossRef]

Garito, A. F.

R. F. Shi, C. Koeppen, G. Gang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3727 (1997).
[CrossRef]

C. Koeppen, S. Yamada, G. Jiang, A. F. Garito, “Rare earth organic complexes for amplification in polymer optical fibers and waveguides,” J. Opt. Soc. Am. B 14, 155–162 (1997).
[CrossRef]

Jiang, G.

Kaino, T.

T. Kaino, “Polymer optical fibers,” in Polymers for Lightwave and Integrated Optics, L. Hornak, ed. (Marcel Dekker, New York, 1992).

Koeppen, C.

R. F. Shi, C. Koeppen, G. Gang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3727 (1997).
[CrossRef]

C. Koeppen, S. Yamada, G. Jiang, A. F. Garito, “Rare earth organic complexes for amplification in polymer optical fibers and waveguides,” J. Opt. Soc. Am. B 14, 155–162 (1997).
[CrossRef]

See, for example, C. Koeppen, “Photonics studies: rare earth chromophores for polymer optical fiber and waveguide amplifiers,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1997) and references therein.

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Lempicki, A.

H. Samelson, C. Brecher, A. Lempicki, “Spectroscopy and coordination chemistry of europium chelate solutions: concentration and solvent effects,” J. Mol. Spectrosc. 19, 349–371 (1966).
[CrossRef]

C. Brecher, H. Samelson, A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081–1096 (1965).
[CrossRef]

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Martin, D. F.

T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, W. J. Randall, “The coordination chemistry of yttrium and the rare earth metal ions,” Chem. Rev. 65, 1–50 (1965).
[CrossRef]

Moeller, T.

T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, W. J. Randall, “The coordination chemistry of yttrium and the rare earth metal ions,” Chem. Rev. 65, 1–50 (1965).
[CrossRef]

Perotto, A.

R. G. Charles, A. Perotto, “Rare earth dibenzoylmethides preparation, dehydration and thermal stability,” J. Inorg. Nucl. Chem. 26, 373–376 (1964).
[CrossRef]

Randall, W. J.

T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, W. J. Randall, “The coordination chemistry of yttrium and the rare earth metal ions,” Chem. Rev. 65, 1–50 (1965).
[CrossRef]

Ross, D. L.

H. Bauer, J. Blanc, D. L. Ross, “Octacoordine chelates of lanthanides. Two series of compounds,” J. Am. Chem. Soc. 86, 5125–5131 (1964).
[CrossRef]

Samelson, H.

H. Samelson, C. Brecher, A. Lempicki, “Spectroscopy and coordination chemistry of europium chelate solutions: concentration and solvent effects,” J. Mol. Spectrosc. 19, 349–371 (1966).
[CrossRef]

C. Brecher, H. Samelson, A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081–1096 (1965).
[CrossRef]

Shi, R. F.

R. F. Shi, C. Koeppen, G. Gang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3727 (1997).
[CrossRef]

Thompson, L. C.

T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, W. J. Randall, “The coordination chemistry of yttrium and the rare earth metal ions,” Chem. Rev. 65, 1–50 (1965).
[CrossRef]

Wang, J.

R. F. Shi, C. Koeppen, G. Gang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3727 (1997).
[CrossRef]

Weber, M. J.

C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Yamada, S.

Appl. Phys. Lett.

R. F. Shi, C. Koeppen, G. Gang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3727 (1997).
[CrossRef]

Chem. Rev.

T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, W. J. Randall, “The coordination chemistry of yttrium and the rare earth metal ions,” Chem. Rev. 65, 1–50 (1965).
[CrossRef]

J. Am. Chem. Soc.

H. Bauer, J. Blanc, D. L. Ross, “Octacoordine chelates of lanthanides. Two series of compounds,” J. Am. Chem. Soc. 86, 5125–5131 (1964).
[CrossRef]

J. Chem. Phys.

C. Brecher, H. Samelson, A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081–1096 (1965).
[CrossRef]

J. Inorg. Nucl. Chem.

R. G. Charles, A. Perotto, “Rare earth dibenzoylmethides preparation, dehydration and thermal stability,” J. Inorg. Nucl. Chem. 26, 373–376 (1964).
[CrossRef]

J. Mol. Spectrosc.

H. Samelson, C. Brecher, A. Lempicki, “Spectroscopy and coordination chemistry of europium chelate solutions: concentration and solvent effects,” J. Mol. Spectrosc. 19, 349–371 (1966).
[CrossRef]

J. Opt. Soc. Am. B

Phys. Rev. B

C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Other

See, for example, C. Koeppen, “Photonics studies: rare earth chromophores for polymer optical fiber and waveguide amplifiers,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1997) and references therein.

T. Kaino, “Polymer optical fibers,” in Polymers for Lightwave and Integrated Optics, L. Hornak, ed. (Marcel Dekker, New York, 1992).

See, for example, M. J. F. Digonnet, ed., Rare Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structures of tetrakis rare-earth (RE) chelates RE(BTF)4P and RE(HFA)4Net4.

Fig. 2
Fig. 2

Observed fluorescence intensity decay (dots) and its fast (dash) and slow (dash–dot) components associated with Sm(BTF)4P and Sm(BTF)3, respectively. Inset: semilog plot comparing observed decay with total double exponential fit.

Fig. 3
Fig. 3

Dependence of single exponential decay lifetime fit on doping concentration in MMA monomer for the 4G5/2 state of Sm(BTF)4P.

Fig. 4
Fig. 4

Single exponential fits (solid curves) to the fluorescence decay curves (dots) along with the residuals of fittings for four different initial Sm(BTF)4P in MMA monomer concentrations: (a) 1.0 × 1020 cm-3, (b) 3.4 × 1017 cm-3, (c) 1 × 1017 cm-3, (d) 6.8 × 1015 cm-3.

Fig. 5
Fig. 5

Double exponential fits (solid curves) to the fluorescence decay curves (dots) along with the residuals of fittings for mid-range initial Sm(BTF)4P in MMA monomer concentrations: (a) 3.4 × 1017 cm-3 of Fig. 4(b) and (b) 1.0 × 1017 cm-3 of Fig. 4(c).

Fig. 6
Fig. 6

Dependence of the equilibrium fraction f 4 of tetrakis species on initial doping concentration C of Sm(BTF)4P in MMA monomer along with its least-squares fit to Eq. (17).

Fig. 7
Fig. 7

Dependence of the equilibrium fraction f 4 of tetrakis species on initial doping concentration C of Eu(BTF)4P in MMA monomer along with its least-squares fit to Eq. (17).

Fig. 8
Fig. 8

Dependence of the metastable state lifetimes of the 4 G 5/2 state Sm(HFA)4Net4 and the 5 D 0 state of Eu(HFA)4Net4 as a function of doping concentration in MMA monomer.

Fig. 9
Fig. 9

Dependence of single exponential decay fits on doping concentrations for the 4 G 5/2 state of Sm(BTF)4P in benzene (squares) and DMF (circles).

Tables (2)

Tables Icon

Table 1 Decay Constantsa

Tables Icon

Table 2 Proportion of Tetrakis and Tris Species of Samarium BTF in MMA Solutions along with Calculated Equilibrium Constants

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

RE L 4     K       RE L 3 + L ,
I = I 4   exp - t / τ 4 + I 3   exp - t / τ 3 ,
f ik = A ik r j A ij r + A ij nr = τ A ik r ,
I total = Gf ik n e = Gn e τ A ik r ,
I total = 0   I t d t = 0   I 0   exp - t / τ d t = I 0 τ ,
I 0 = GA ik r n e .
I 4 = GA 4 r n 4 e ,
I 3 = GA 3 r n 3 e ,
n 4 e n 3 e = 4 3 n 4 n 3 ,
n 4 n 3 = 3 4 A 3 r A 4 r I 4 I 3 .
C 4 C 3 = n 4 n 3 = 3 4 I 4 I 3 .
C 4 = 3 I 4 3 I 4 + 4 I 3   C ,
C 3 = 3 I 3 3 I 4 + 4 I 3   C ,
K = C 3 C L C 4 = C 3 2 C 4 ,
C 3 + C 4 = C ,
f 4 = C 4 C ,
f 4 = 1 + K 2 C - K 2 C 2 + K C 1 / 2 .

Metrics