Abstract

Refractive indices and extinction coefficients of several polymers have been measured for the wide infrared wavelength region. The polymers used as coating materials have also been found useful for low-loss hollow waveguides for the transmission of Er:YAG, CO, and CO2 laser light, respectively.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  2. A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120 (1992).
    [CrossRef] [PubMed]
  3. C. E. Morrow, G. Gu, “Fiberlase™: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 18–27 (1994).
    [CrossRef]
  4. I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
    [CrossRef] [PubMed]
  5. R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 34, 372–380 (1996).
    [CrossRef]
  6. Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
    [CrossRef]
  7. Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
    [CrossRef] [PubMed]
  8. Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).
    [CrossRef]
  9. C. J. Pouchert, Aldrich Library of Infrared Spectra, 3rd Ed. (Aldrich Chemical Company, Milwaukee, Wis., 1981), pp. XVIII–V/26.
  10. B. Schrader, Raman/Infrared Atlas of Organic Compounds, 2nd Ed. (VCH Verlagsgesellschaft mbH, D-6940 Weinheim, Germany, 1989), pp. IX–XII.
  11. D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
    [CrossRef]
  12. Y. Wang, M. Miyagi, “Simultaneous measurement of optical constants of dispersive material at visible and infrared wavelengths,” Appl. Opt. 36, 877–884 (1997).
    [CrossRef] [PubMed]
  13. M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
    [CrossRef]
  14. T. Kataoka, Engineering Plastic, 1st ed. (Kyoritsu Press, Tokyo, Japan, 1993), pp. 28–31, in Japanese.
  15. M. Matsuo, “Recent development of cyclic olefin polymers—Polymers derived from dicyclopentadiene (DCPD),” High Molecule 45, 652–656 (1996), in Japanese.
  16. M. Ohki, T. Osawa, M. Tanaka, H. Chihara, Chemical Dictionary, 1st ed. (Tokyo Kagaku Doujin, Tokyo, Japan, 1989), pp. 2242–2243, in Japanese.
  17. E. D. Palik, ed., Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), Part II, pp. 547–552.
  18. J. Brandrup, E. H. Immergut, Polymer Handbook, 3rd ed. (Wiley, New York, 1989), Sect. V, pp. V/15–V/26.
  19. H. Wachi, “Transparent fluorocarbon polymer: CYTOP,” New Material 12, 67–71 (1991), in Japanese.
  20. Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama, M. Taniwaki, S. Sato, “Fabrication of cyclic olefin polymer (COP)-coated silver hollow glass waveguides for the infrared,” in Surgical-Assist Systems, A. Katzir, J. A. Harrington, M. W. Vannier, M. S. Bogner, S. Grundfest, R. V. Hanwehr, eds., Proc. SPIE3262, 96–102 (1998).
    [CrossRef]
  21. Y. Matsuura, K. Matsuura, J. A. Harrington, “Power delivery of free electron laser light by hollow glass waveguides,” Appl. Opt. 35, 5395–5397 (1996).
    [CrossRef] [PubMed]
  22. I. Gannot, R. W. Waynant, A. Inberg, N. Croitoru, “Broadband flexible waveguides for free-electron laser radiation,” Appl. Opt. 36, 6289–6293 (1997).
    [CrossRef]

1998 (1)

1997 (3)

1996 (3)

Y. Matsuura, K. Matsuura, J. A. Harrington, “Power delivery of free electron laser light by hollow glass waveguides,” Appl. Opt. 35, 5395–5397 (1996).
[CrossRef] [PubMed]

M. Matsuo, “Recent development of cyclic olefin polymers—Polymers derived from dicyclopentadiene (DCPD),” High Molecule 45, 652–656 (1996), in Japanese.

R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 34, 372–380 (1996).
[CrossRef]

1995 (3)

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

1992 (1)

1991 (1)

H. Wachi, “Transparent fluorocarbon polymer: CYTOP,” New Material 12, 67–71 (1991), in Japanese.

1989 (1)

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
[CrossRef]

1984 (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Abe, S.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Abe, Y.

Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).
[CrossRef]

Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama, M. Taniwaki, S. Sato, “Fabrication of cyclic olefin polymer (COP)-coated silver hollow glass waveguides for the infrared,” in Surgical-Assist Systems, A. Katzir, J. A. Harrington, M. W. Vannier, M. S. Bogner, S. Grundfest, R. V. Hanwehr, eds., Proc. SPIE3262, 96–102 (1998).
[CrossRef]

Aizawa, M.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Brandrup, J.

J. Brandrup, E. H. Immergut, Polymer Handbook, 3rd ed. (Wiley, New York, 1989), Sect. V, pp. V/15–V/26.

Chenault, D. B.

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
[CrossRef]

Chihara, H.

M. Ohki, T. Osawa, M. Tanaka, H. Chihara, Chemical Dictionary, 1st ed. (Tokyo Kagaku Doujin, Tokyo, Japan, 1989), pp. 2242–2243, in Japanese.

Chipman, R. A.

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
[CrossRef]

Croitoru, N.

I. Gannot, R. W. Waynant, A. Inberg, N. Croitoru, “Broadband flexible waveguides for free-electron laser radiation,” Appl. Opt. 36, 6289–6293 (1997).
[CrossRef]

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Dror, J.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Ertl, T.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Gannot, I.

I. Gannot, R. W. Waynant, A. Inberg, N. Croitoru, “Broadband flexible waveguides for free-electron laser radiation,” Appl. Opt. 36, 6289–6293 (1997).
[CrossRef]

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Gojo, T.

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Goldstein, D. H.

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
[CrossRef]

Gu, G.

C. E. Morrow, G. Gu, “Fiberlase™: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 18–27 (1994).
[CrossRef]

Harrington, J. A.

R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 34, 372–380 (1996).
[CrossRef]

Y. Matsuura, K. Matsuura, J. A. Harrington, “Power delivery of free electron laser light by hollow glass waveguides,” Appl. Opt. 35, 5395–5397 (1996).
[CrossRef] [PubMed]

Hashimoto, T.

Hongo, A.

Immergut, E. H.

J. Brandrup, E. H. Immergut, Polymer Handbook, 3rd ed. (Wiley, New York, 1989), Sect. V, pp. V/15–V/26.

Inberg, A.

I. Gannot, R. W. Waynant, A. Inberg, N. Croitoru, “Broadband flexible waveguides for free-electron laser radiation,” Appl. Opt. 36, 6289–6293 (1997).
[CrossRef]

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Kataoka, T.

T. Kataoka, Engineering Plastic, 1st ed. (Kyoritsu Press, Tokyo, Japan, 1993), pp. 28–31, in Japanese.

Kato, Y.

Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Matsumoto, K.

Matsuo, M.

M. Matsuo, “Recent development of cyclic olefin polymers—Polymers derived from dicyclopentadiene (DCPD),” High Molecule 45, 652–656 (1996), in Japanese.

Matsuura, K.

Matsuura, Y.

Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).
[CrossRef]

Y. Matsuura, K. Matsuura, J. A. Harrington, “Power delivery of free electron laser light by hollow glass waveguides,” Appl. Opt. 35, 5395–5397 (1996).
[CrossRef] [PubMed]

Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama, M. Taniwaki, S. Sato, “Fabrication of cyclic olefin polymer (COP)-coated silver hollow glass waveguides for the infrared,” in Surgical-Assist Systems, A. Katzir, J. A. Harrington, M. W. Vannier, M. S. Bogner, S. Grundfest, R. V. Hanwehr, eds., Proc. SPIE3262, 96–102 (1998).
[CrossRef]

Miura, D.

Miyagi, M.

Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).
[CrossRef]

Y. Wang, M. Miyagi, “Simultaneous measurement of optical constants of dispersive material at visible and infrared wavelengths,” Appl. Opt. 36, 877–884 (1997).
[CrossRef] [PubMed]

Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama, M. Taniwaki, S. Sato, “Fabrication of cyclic olefin polymer (COP)-coated silver hollow glass waveguides for the infrared,” in Surgical-Assist Systems, A. Katzir, J. A. Harrington, M. W. Vannier, M. S. Bogner, S. Grundfest, R. V. Hanwehr, eds., Proc. SPIE3262, 96–102 (1998).
[CrossRef]

Morosawa, K.

Morrow, C. E.

C. E. Morrow, G. Gu, “Fiberlase™: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 18–27 (1994).
[CrossRef]

Müller, G. J.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Nubling, R. K.

R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 34, 372–380 (1996).
[CrossRef]

Ohki, M.

M. Ohki, T. Osawa, M. Tanaka, H. Chihara, Chemical Dictionary, 1st ed. (Tokyo Kagaku Doujin, Tokyo, Japan, 1989), pp. 2242–2243, in Japanese.

Onodera, S.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Osawa, M.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Osawa, T.

M. Ohki, T. Osawa, M. Tanaka, H. Chihara, Chemical Dictionary, 1st ed. (Tokyo Kagaku Doujin, Tokyo, Japan, 1989), pp. 2242–2243, in Japanese.

Pouchert, C. J.

C. J. Pouchert, Aldrich Library of Infrared Spectra, 3rd Ed. (Aldrich Chemical Company, Milwaukee, Wis., 1981), pp. XVIII–V/26.

Saito, M.

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Sato, S.

Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama, M. Taniwaki, S. Sato, “Fabrication of cyclic olefin polymer (COP)-coated silver hollow glass waveguides for the infrared,” in Surgical-Assist Systems, A. Katzir, J. A. Harrington, M. W. Vannier, M. S. Bogner, S. Grundfest, R. V. Hanwehr, eds., Proc. SPIE3262, 96–102 (1998).
[CrossRef]

Schrader, B.

B. Schrader, Raman/Infrared Atlas of Organic Compounds, 2nd Ed. (VCH Verlagsgesellschaft mbH, D-6940 Weinheim, Germany, 1989), pp. IX–XII.

Schründer, S.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Shi, Y. W.

Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).
[CrossRef]

Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama, M. Taniwaki, S. Sato, “Fabrication of cyclic olefin polymer (COP)-coated silver hollow glass waveguides for the infrared,” in Surgical-Assist Systems, A. Katzir, J. A. Harrington, M. W. Vannier, M. S. Bogner, S. Grundfest, R. V. Hanwehr, eds., Proc. SPIE3262, 96–102 (1998).
[CrossRef]

Shimomura, T.

Shiota, T.

Tanaka, M.

M. Ohki, T. Osawa, M. Tanaka, H. Chihara, Chemical Dictionary, 1st ed. (Tokyo Kagaku Doujin, Tokyo, Japan, 1989), pp. 2242–2243, in Japanese.

Taniwaki, M.

Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama, M. Taniwaki, S. Sato, “Fabrication of cyclic olefin polymer (COP)-coated silver hollow glass waveguides for the infrared,” in Surgical-Assist Systems, A. Katzir, J. A. Harrington, M. W. Vannier, M. S. Bogner, S. Grundfest, R. V. Hanwehr, eds., Proc. SPIE3262, 96–102 (1998).
[CrossRef]

Tschepe, J.

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Uyama, H.

Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).
[CrossRef]

Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama, M. Taniwaki, S. Sato, “Fabrication of cyclic olefin polymer (COP)-coated silver hollow glass waveguides for the infrared,” in Surgical-Assist Systems, A. Katzir, J. A. Harrington, M. W. Vannier, M. S. Bogner, S. Grundfest, R. V. Hanwehr, eds., Proc. SPIE3262, 96–102 (1998).
[CrossRef]

Wachi, H.

H. Wachi, “Transparent fluorocarbon polymer: CYTOP,” New Material 12, 67–71 (1991), in Japanese.

Wang, Y.

Waynant, R. W.

Appl. Opt. (6)

Electron. Lett. (1)

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

High Molecule (1)

M. Matsuo, “Recent development of cyclic olefin polymers—Polymers derived from dicyclopentadiene (DCPD),” High Molecule 45, 652–656 (1996), in Japanese.

IEEE Trans. Biomed. Eng. (1)

I. Gannot, S. Schründer, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Müller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Infrared Phys. Technol. (1)

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

New Material (1)

H. Wachi, “Transparent fluorocarbon polymer: CYTOP,” New Material 12, 67–71 (1991), in Japanese.

Opt. Eng. (1)

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
[CrossRef]

Opt. Lett. (1)

Other (8)

C. J. Pouchert, Aldrich Library of Infrared Spectra, 3rd Ed. (Aldrich Chemical Company, Milwaukee, Wis., 1981), pp. XVIII–V/26.

B. Schrader, Raman/Infrared Atlas of Organic Compounds, 2nd Ed. (VCH Verlagsgesellschaft mbH, D-6940 Weinheim, Germany, 1989), pp. IX–XII.

C. E. Morrow, G. Gu, “Fiberlase™: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 18–27 (1994).
[CrossRef]

T. Kataoka, Engineering Plastic, 1st ed. (Kyoritsu Press, Tokyo, Japan, 1993), pp. 28–31, in Japanese.

M. Ohki, T. Osawa, M. Tanaka, H. Chihara, Chemical Dictionary, 1st ed. (Tokyo Kagaku Doujin, Tokyo, Japan, 1989), pp. 2242–2243, in Japanese.

E. D. Palik, ed., Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), Part II, pp. 547–552.

J. Brandrup, E. H. Immergut, Polymer Handbook, 3rd ed. (Wiley, New York, 1989), Sect. V, pp. V/15–V/26.

Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama, M. Taniwaki, S. Sato, “Fabrication of cyclic olefin polymer (COP)-coated silver hollow glass waveguides for the infrared,” in Surgical-Assist Systems, A. Katzir, J. A. Harrington, M. W. Vannier, M. S. Bogner, S. Grundfest, R. V. Hanwehr, eds., Proc. SPIE3262, 96–102 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Reflectance spectra of a PN (OV-351) film on a Si substrate. The theoretical curve was obtained by using the data of complex refractive index of Si (Ref. 17) and by assuming that the film is uniform and the thickness and refractive index of PN are 1.21 μm and 1.50 for the fitting, respectively.

Fig. 2
Fig. 2

Extinction coefficients of eleven kinds of polymer in the mid-infrared region.

Tables (3)

Tables Icon

Table 1 Glass Transition Temperature, Solvent, and Film Formation Methods for both Thin and Thick Films of Polymersa

Tables Icon

Table 2 Refractive Indices and Extinction Coefficients of Eleven Kinds of Polymer at Er:YAG, CO, and CO2 Laser Wavelengths

Tables Icon

Table 3 Attenuations of the HE11 Mode in Silver Hollow Waveguides (700 μmϕ) Inner Coated by Various Dielectric Materials at CO2 Laser Wavelengthsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 nd / m

Metrics