Abstract

We demonstrate experimentally the compression of optical pulses, spectrally broadened by self-phase modulation occurring in the rod of a mode-locked Q-switched YLF laser, with an unchirped, apodized fiber Bragg grating in transmission. The compression is due to the strong dispersion of the Bragg grating at frequencies close to the edge of the photonic bandgap, in the passband, where the transmission is high. With the systems investigated, an 80-ps pulse, which is spectrally broadened, owing to self-phase modulation, with a peak nonlinear phase shift of ΔΦ = 7, is compressed to approximately 15 ps, in good agreement with theory and numerical simulations. The results demonstrate that photonic bandgap structures are promising devices for efficient pulse compression.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
    [CrossRef]
  2. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
    [CrossRef] [PubMed]
  3. P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, P. Hill, “Dispersion compensation over 270 km at 10Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).
    [CrossRef]
  4. P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991).
    [CrossRef]
  5. N. M. Litchinitser, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse compression,” IEEE J. Lightwave Technol. 15, 1303–1313 (1997).
    [CrossRef]
  6. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
    [CrossRef]
  7. W. J. Tomlinson, R. H. Stolen, C. V. Shank, “Compression of optical pulses by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139–143 (1984).
    [CrossRef]
  8. J. A. R. Williams, I. Bennion, L. Zhang, “Compression of optical pulse using self-phase modulation and linearly chirped Bragg-gratings in fibers,” IEEE Photonics Technol. Lett. 7, 491–493 (1995).
    [CrossRef]
  9. D. S. Peter, W. Hodel, H. P. Weber, “Compression of pulses spectrally broadened by self-phase modulation using a fiber grating: a theoretical study of the compression efficiency,” Opt. Commun. 112, 59–66 (1994).
    [CrossRef]
  10. G. Lenz, B. J. Eggleton, N. M. Litchinitser, “Pulse compression using fiber gratings as highly dispersive nonlinear elements,” J. Opt. Soc. Am. B 15, 715–721 (1998).
    [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  12. J. E. Sipe, B. J. Eggleton, T. A. Strasser, “Dispersion of nonuniform Bragg gratings: implications for WDM communications systems,” Opt. Commun. 152, 269–274 (1998).
    [CrossRef]
  13. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996);B. J. Eggleton, C. M. de Sterke, R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
    [CrossRef] [PubMed]
  14. D. J. Kuizenga, D. W. Phillion, “Simultaneous Q-switching and modelocking in the CW ND:YAG laser,” Opt. Commun. 9, 221–226 (1973).
    [CrossRef]
  15. D. Von der Linde, “Experimental study of single picosecond light pulses,” IEEE J. Quantum. Electron. QE-8, 328–338 (1972).
    [CrossRef]
  16. T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.
  17. K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry–Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photonics Technol. Lett. 7, 158–160 (1995).
    [CrossRef]
  18. A. Galvanauskas, A. Heany, T. Erdogan, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThJ2.

1998 (2)

G. Lenz, B. J. Eggleton, N. M. Litchinitser, “Pulse compression using fiber gratings as highly dispersive nonlinear elements,” J. Opt. Soc. Am. B 15, 715–721 (1998).
[CrossRef]

J. E. Sipe, B. J. Eggleton, T. A. Strasser, “Dispersion of nonuniform Bragg gratings: implications for WDM communications systems,” Opt. Commun. 152, 269–274 (1998).
[CrossRef]

1997 (1)

N. M. Litchinitser, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse compression,” IEEE J. Lightwave Technol. 15, 1303–1313 (1997).
[CrossRef]

1996 (3)

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996);B. J. Eggleton, C. M. de Sterke, R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef] [PubMed]

1995 (3)

K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry–Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photonics Technol. Lett. 7, 158–160 (1995).
[CrossRef]

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, P. Hill, “Dispersion compensation over 270 km at 10Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).
[CrossRef]

J. A. R. Williams, I. Bennion, L. Zhang, “Compression of optical pulse using self-phase modulation and linearly chirped Bragg-gratings in fibers,” IEEE Photonics Technol. Lett. 7, 491–493 (1995).
[CrossRef]

1994 (1)

D. S. Peter, W. Hodel, H. P. Weber, “Compression of pulses spectrally broadened by self-phase modulation using a fiber grating: a theoretical study of the compression efficiency,” Opt. Commun. 112, 59–66 (1994).
[CrossRef]

1991 (1)

P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991).
[CrossRef]

1987 (1)

1984 (1)

1973 (1)

D. J. Kuizenga, D. W. Phillion, “Simultaneous Q-switching and modelocking in the CW ND:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

1972 (1)

D. Von der Linde, “Experimental study of single picosecond light pulses,” IEEE J. Quantum. Electron. QE-8, 328–338 (1972).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Ahmed, K. A.

K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry–Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photonics Technol. Lett. 7, 158–160 (1995).
[CrossRef]

Andrejco, M. J.

T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.

Bendikson, J. M.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Bennion, I.

J. A. R. Williams, I. Bennion, L. Zhang, “Compression of optical pulse using self-phase modulation and linearly chirped Bragg-gratings in fibers,” IEEE Photonics Technol. Lett. 7, 491–493 (1995).
[CrossRef]

Bloemer, M. J.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Bowden, C. M.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Brodzeli, Z.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

Chandonnet, P. J.

T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.

de Sterke, C. M.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996);B. J. Eggleton, C. M. de Sterke, R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef] [PubMed]

DeMarko, J.

T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.

Dhosi, G.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, P. Hill, “Dispersion compensation over 270 km at 10Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).
[CrossRef]

Di Giovanni, D. J.

T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.

Dowling, J. P.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Eggleton, B. J.

J. E. Sipe, B. J. Eggleton, T. A. Strasser, “Dispersion of nonuniform Bragg gratings: implications for WDM communications systems,” Opt. Commun. 152, 269–274 (1998).
[CrossRef]

G. Lenz, B. J. Eggleton, N. M. Litchinitser, “Pulse compression using fiber gratings as highly dispersive nonlinear elements,” J. Opt. Soc. Am. B 15, 715–721 (1998).
[CrossRef]

N. M. Litchinitser, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse compression,” IEEE J. Lightwave Technol. 15, 1303–1313 (1997).
[CrossRef]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996);B. J. Eggleton, C. M. de Sterke, R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef] [PubMed]

K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry–Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photonics Technol. Lett. 7, 158–160 (1995).
[CrossRef]

Erdogan, T.

A. Galvanauskas, A. Heany, T. Erdogan, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThJ2.

Flynn, R. J.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Fork, R. L.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, A. Heany, T. Erdogan, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThJ2.

Heany, A.

A. Galvanauskas, A. Heany, T. Erdogan, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThJ2.

Hill, P.

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, P. Hill, “Dispersion compensation over 270 km at 10Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).
[CrossRef]

Hodel, W.

D. S. Peter, W. Hodel, H. P. Weber, “Compression of pulses spectrally broadened by self-phase modulation using a fiber grating: a theoretical study of the compression efficiency,” Opt. Commun. 112, 59–66 (1994).
[CrossRef]

Krug, P. A.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996);B. J. Eggleton, C. M. de Sterke, R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef] [PubMed]

K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry–Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photonics Technol. Lett. 7, 158–160 (1995).
[CrossRef]

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, P. Hill, “Dispersion compensation over 270 km at 10Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga, D. W. Phillion, “Simultaneous Q-switching and modelocking in the CW ND:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Leavitt, R. P.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Ledbetter, H. S.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Lenz, G.

Litchinitser, N. M.

G. Lenz, B. J. Eggleton, N. M. Litchinitser, “Pulse compression using fiber gratings as highly dispersive nonlinear elements,” J. Opt. Soc. Am. B 15, 715–721 (1998).
[CrossRef]

N. M. Litchinitser, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse compression,” IEEE J. Lightwave Technol. 15, 1303–1313 (1997).
[CrossRef]

Liu, H. F.

K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry–Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photonics Technol. Lett. 7, 158–160 (1995).
[CrossRef]

Ouellette, F.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, P. Hill, “Dispersion compensation over 270 km at 10Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).
[CrossRef]

K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry–Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photonics Technol. Lett. 7, 158–160 (1995).
[CrossRef]

F. Ouellette, “Dispersion cancellation using linearly chirped Bragg filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
[CrossRef] [PubMed]

Patterson, D. B.

N. M. Litchinitser, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse compression,” IEEE J. Lightwave Technol. 15, 1303–1313 (1997).
[CrossRef]

Pedrazzani, J. R.

T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.

Peter, D. S.

D. S. Peter, W. Hodel, H. P. Weber, “Compression of pulses spectrally broadened by self-phase modulation using a fiber grating: a theoretical study of the compression efficiency,” Opt. Commun. 112, 59–66 (1994).
[CrossRef]

Phillion, D. W.

D. J. Kuizenga, D. W. Phillion, “Simultaneous Q-switching and modelocking in the CW ND:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

Reinhardt, S. B.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Scalora, M.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Shank, C. V.

Shenk, D. S.

T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.

Sipe, J. E.

J. E. Sipe, B. J. Eggleton, T. A. Strasser, “Dispersion of nonuniform Bragg gratings: implications for WDM communications systems,” Opt. Commun. 152, 269–274 (1998).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996);B. J. Eggleton, C. M. de Sterke, R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef] [PubMed]

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996);B. J. Eggleton, C. M. de Sterke, R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef] [PubMed]

Soccolich, C. E.

T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.

St. J. Russell, P.

P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991).
[CrossRef]

Stephens, T.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, P. Hill, “Dispersion compensation over 270 km at 10Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).
[CrossRef]

Stolen, R. H.

Strasser, T. A.

J. E. Sipe, B. J. Eggleton, T. A. Strasser, “Dispersion of nonuniform Bragg gratings: implications for WDM communications systems,” Opt. Commun. 152, 269–274 (1998).
[CrossRef]

T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.

Tocci, M. D.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Tomlinson, W. J.

Von der Linde, D.

D. Von der Linde, “Experimental study of single picosecond light pulses,” IEEE J. Quantum. Electron. QE-8, 328–338 (1972).
[CrossRef]

Weber, H. P.

D. S. Peter, W. Hodel, H. P. Weber, “Compression of pulses spectrally broadened by self-phase modulation using a fiber grating: a theoretical study of the compression efficiency,” Opt. Commun. 112, 59–66 (1994).
[CrossRef]

Williams, J. A. R.

J. A. R. Williams, I. Bennion, L. Zhang, “Compression of optical pulse using self-phase modulation and linearly chirped Bragg-gratings in fibers,” IEEE Photonics Technol. Lett. 7, 491–493 (1995).
[CrossRef]

Yoffe, G.

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, P. Hill, “Dispersion compensation over 270 km at 10Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).
[CrossRef]

Zhang, L.

J. A. R. Williams, I. Bennion, L. Zhang, “Compression of optical pulse using self-phase modulation and linearly chirped Bragg-gratings in fibers,” IEEE Photonics Technol. Lett. 7, 491–493 (1995).
[CrossRef]

Electron. Lett. (2)

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, P. Hill, “Dispersion compensation over 270 km at 10Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).
[CrossRef]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[CrossRef]

IEEE J. Lightwave Technol. (1)

N. M. Litchinitser, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse compression,” IEEE J. Lightwave Technol. 15, 1303–1313 (1997).
[CrossRef]

IEEE J. Quantum. Electron. (1)

D. Von der Linde, “Experimental study of single picosecond light pulses,” IEEE J. Quantum. Electron. QE-8, 328–338 (1972).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

J. A. R. Williams, I. Bennion, L. Zhang, “Compression of optical pulse using self-phase modulation and linearly chirped Bragg-gratings in fibers,” IEEE Photonics Technol. Lett. 7, 491–493 (1995).
[CrossRef]

K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry–Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photonics Technol. Lett. 7, 158–160 (1995).
[CrossRef]

J. Mod. Opt. (1)

P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

J. E. Sipe, B. J. Eggleton, T. A. Strasser, “Dispersion of nonuniform Bragg gratings: implications for WDM communications systems,” Opt. Commun. 152, 269–274 (1998).
[CrossRef]

D. J. Kuizenga, D. W. Phillion, “Simultaneous Q-switching and modelocking in the CW ND:YAG laser,” Opt. Commun. 9, 221–226 (1973).
[CrossRef]

D. S. Peter, W. Hodel, H. P. Weber, “Compression of pulses spectrally broadened by self-phase modulation using a fiber grating: a theoretical study of the compression efficiency,” Opt. Commun. 112, 59–66 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996).
[CrossRef]

Phys. Rev. Lett. (1)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996);B. J. Eggleton, C. M. de Sterke, R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
[CrossRef] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.

A. Galvanauskas, A. Heany, T. Erdogan, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThJ2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of compressor. The first section (SPM) is for bandwidth generation, and the second section (Bragg grating) is for chirp compensation.

Fig. 2
Fig. 2

Pulse compression according to numerical simulation of coupled-mode equations. Grating parameters: κ = 21.5 cm-1 and L = 5 cm (apodized). Short-dashed curve, spectrally broadened input pulse (FWHM = 80 ps, ΔΦ = 7, δ = 39 cm-1, Δλ = -0.47 nm); solid curve, pulse compressed by the grating; dashed curve, pulse compressed by the ideal compressor, with only quadratic dispersion.

Fig. 3
Fig. 3

Experimental setup. The inset shows the mode-locked pulse train, in the Q-switched envelope, consisting of approximately 100 mode-locked pulses.

Fig. 4
Fig. 4

Measured transmission spectrum of apodized Bragg grating as a function of wavelength (bottom axis) and detuning (top axis).

Fig. 5
Fig. 5

Experimentally measured transmitted intensity as a function of time. Dashed curve, spectrally broadened input pulse (FWHM = 80 ps, ΔΦ = 7, Δλ = -0.45 nm); solid curve, compressed pulse.

Fig. 6
Fig. 6

Deconvolved pulsewidth (FWHM) of transmitted pulse as a function of wavelength detuning (Δλ). Transmission spectrum of apodized Bragg grating is superimposed.

Fig. 7
Fig. 7

Transmitted intensities for detunings of (a) Δλ = -0.54 nm and (b) Δλ = -0.41 nm.

Fig. 8
Fig. 8

Deconvolved pulsewidth (FWHM) of transmitted pulse as a function of nonlinear phase shift (ΔΦ).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

| β 2 | z T 0 2 2 Δ Φ ,
Q = T 0 / T c 0.75 Δ Φ ,
Q 2 | β 2 | z Δ ω s 2 .
β 2 = - n c 2 1 δ κ / δ 2 1 - κ δ 2 3 / 2 ,
β 3 = 3 n c 3 1 δ 2 κ / δ 2 1 - κ δ 2 5 / 2 ,
M = β 3 Δ ω s β 2 = 3 Δ ω s n c 1 | δ | 1 1 - κ / δ 2 .

Metrics