Abstract

We combined functionalities of two diffractive optics with almost 100× lateral and vertical scale-length difference onto a single fused-silica surface. Fine-scale (2-μm-period) gratings for beam sampling were printed in photoresist by interference lithography and transferred to the substrate by a hydrofluoric acid etch. Subsequently, 115-μm-linewidth stairstep gratings for color separation at focus were proximity printed and wet etched in a two-mask process. Line shapes of the lamellar sampling grating are remarkably preserved following etching of the much deeper color separation grating structures with this nominally isotropic etch process. Model simulations of isotropic etching of topographical features show good agreement with the measured shape evolution of the sampling grating profiles, and the simulations reveal the sensitivity of the final feature shape to its initial aspect ratio. As a rule of thumb, lamellar grating profiles can be etched approximately 0.08A -2 times their modulation depth, where A is their initial aspect ratio (height/width), before they evolve into a cusplike shape and begin to lose height.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. English, “Overview of the NIF optical system design,” Lawrence Livermore National Laboratory Rep. No. UCRL-LR-105821-97-3 (Lawrence Livermore National Laboratory, Livermore, Calif., 1997).
  2. J. A. Britten, R. D. Boyd, M. D. Perry, B. W. Shore, I. M. Thomas, “Low-efficiency gratings for third-harmonic diagnostic applications,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE2633, 121–128 (1995).
    [CrossRef]
  3. S. N. Dixit, M. C. RusHFord, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).
    [CrossRef]
  4. M. C. Rushford, S. N. Dixit, I. M. Thomas, A. M. Martin, M. D. Perry, “Large-aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet lasers,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. Andre, ed., Proc. SPIE3047, 282–292 (1996).
    [CrossRef]
  5. H. Dammann, “Color separation gratings,” Appl. Opt. 17, 2273–2279 (1978).
    [CrossRef] [PubMed]
  6. M. W. Farn, M. B. Stern, W. B. Veldkamp, S. S. Medeiros, “Color separation by use of binary optics,” Opt. Lett. 18, 1214–1216 (1993).
    [CrossRef] [PubMed]
  7. T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
    [CrossRef]
  8. G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28, 6261–6273 (1993).
    [CrossRef]
  9. D. T. Liang, D. W. Readey, “Dissolutions kinetics of crystalline and amorphous silica in hydrofluoric–hydrochloric acid mixtures,” J. Am. Ceram. Soc. 70, 570–577 (1987).
    [CrossRef]
  10. I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt. 25, 1481–1483 (1986).
    [CrossRef] [PubMed]
  11. S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
    [CrossRef]

1993 (2)

G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28, 6261–6273 (1993).
[CrossRef]

M. W. Farn, M. B. Stern, W. B. Veldkamp, S. S. Medeiros, “Color separation by use of binary optics,” Opt. Lett. 18, 1214–1216 (1993).
[CrossRef] [PubMed]

1987 (1)

D. T. Liang, D. W. Readey, “Dissolutions kinetics of crystalline and amorphous silica in hydrofluoric–hydrochloric acid mixtures,” J. Am. Ceram. Soc. 70, 570–577 (1987).
[CrossRef]

1986 (1)

1982 (1)

S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
[CrossRef]

1978 (1)

Barton, I.

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Bett, T. H.

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Blair, P.

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Boyd, R. D.

J. A. Britten, R. D. Boyd, M. D. Perry, B. W. Shore, I. M. Thomas, “Low-efficiency gratings for third-harmonic diagnostic applications,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE2633, 121–128 (1995).
[CrossRef]

Britten, J. A.

J. A. Britten, R. D. Boyd, M. D. Perry, B. W. Shore, I. M. Thomas, “Low-efficiency gratings for third-harmonic diagnostic applications,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE2633, 121–128 (1995).
[CrossRef]

S. N. Dixit, M. C. RusHFord, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).
[CrossRef]

Dammann, H.

Dixit, S. N.

M. C. Rushford, S. N. Dixit, I. M. Thomas, A. M. Martin, M. D. Perry, “Large-aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet lasers,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. Andre, ed., Proc. SPIE3047, 282–292 (1996).
[CrossRef]

S. N. Dixit, M. C. RusHFord, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).
[CrossRef]

English, R. E.

R. E. English, “Overview of the NIF optical system design,” Lawrence Livermore National Laboratory Rep. No. UCRL-LR-105821-97-3 (Lawrence Livermore National Laboratory, Livermore, Calif., 1997).

Farn, M. W.

Herman, S. M.

S. N. Dixit, M. C. RusHFord, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).
[CrossRef]

Layet, B.

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Liang, D. T.

D. T. Liang, D. W. Readey, “Dissolutions kinetics of crystalline and amorphous silica in hydrofluoric–hydrochloric acid mixtures,” J. Am. Ceram. Soc. 70, 570–577 (1987).
[CrossRef]

Lightbody, T. M.

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Lindau, S.

S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
[CrossRef]

Martin, A. M.

M. C. Rushford, S. N. Dixit, I. M. Thomas, A. M. Martin, M. D. Perry, “Large-aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet lasers,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. Andre, ed., Proc. SPIE3047, 282–292 (1996).
[CrossRef]

McMonagle, J.

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Medeiros, S. S.

Perry, M. D.

J. A. Britten, R. D. Boyd, M. D. Perry, B. W. Shore, I. M. Thomas, “Low-efficiency gratings for third-harmonic diagnostic applications,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE2633, 121–128 (1995).
[CrossRef]

M. C. Rushford, S. N. Dixit, I. M. Thomas, A. M. Martin, M. D. Perry, “Large-aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet lasers,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. Andre, ed., Proc. SPIE3047, 282–292 (1996).
[CrossRef]

S. N. Dixit, M. C. RusHFord, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).
[CrossRef]

Readey, D. W.

D. T. Liang, D. W. Readey, “Dissolutions kinetics of crystalline and amorphous silica in hydrofluoric–hydrochloric acid mixtures,” J. Am. Ceram. Soc. 70, 570–577 (1987).
[CrossRef]

Robb, G.

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Rushford, M. C.

M. C. Rushford, S. N. Dixit, I. M. Thomas, A. M. Martin, M. D. Perry, “Large-aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet lasers,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. Andre, ed., Proc. SPIE3047, 282–292 (1996).
[CrossRef]

S. N. Dixit, M. C. RusHFord, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).
[CrossRef]

Shore, B. W.

S. N. Dixit, M. C. RusHFord, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).
[CrossRef]

J. A. Britten, R. D. Boyd, M. D. Perry, B. W. Shore, I. M. Thomas, “Low-efficiency gratings for third-harmonic diagnostic applications,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE2633, 121–128 (1995).
[CrossRef]

Spierings, G. A. C. M.

G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28, 6261–6273 (1993).
[CrossRef]

Stern, M. B.

Stevenson, R. M.

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Taghizadeh, M. R.

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Thomas, I. M.

I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt. 25, 1481–1483 (1986).
[CrossRef] [PubMed]

J. A. Britten, R. D. Boyd, M. D. Perry, B. W. Shore, I. M. Thomas, “Low-efficiency gratings for third-harmonic diagnostic applications,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE2633, 121–128 (1995).
[CrossRef]

S. N. Dixit, M. C. RusHFord, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).
[CrossRef]

M. C. Rushford, S. N. Dixit, I. M. Thomas, A. M. Martin, M. D. Perry, “Large-aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet lasers,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. Andre, ed., Proc. SPIE3047, 282–292 (1996).
[CrossRef]

Veldkamp, W. B.

Watson, N.

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Appl. Opt. (2)

J. Am. Ceram. Soc. (1)

D. T. Liang, D. W. Readey, “Dissolutions kinetics of crystalline and amorphous silica in hydrofluoric–hydrochloric acid mixtures,” J. Am. Ceram. Soc. 70, 570–577 (1987).
[CrossRef]

J. Mater. Sci. (1)

G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28, 6261–6273 (1993).
[CrossRef]

Opt. Acta (1)

S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
[CrossRef]

Opt. Lett. (1)

Other (5)

R. E. English, “Overview of the NIF optical system design,” Lawrence Livermore National Laboratory Rep. No. UCRL-LR-105821-97-3 (Lawrence Livermore National Laboratory, Livermore, Calif., 1997).

J. A. Britten, R. D. Boyd, M. D. Perry, B. W. Shore, I. M. Thomas, “Low-efficiency gratings for third-harmonic diagnostic applications,” in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE2633, 121–128 (1995).
[CrossRef]

S. N. Dixit, M. C. RusHFord, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).
[CrossRef]

M. C. Rushford, S. N. Dixit, I. M. Thomas, A. M. Martin, M. D. Perry, “Large-aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet lasers,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. Andre, ed., Proc. SPIE3047, 282–292 (1996).
[CrossRef]

T. H. Bett, R. M. Stevenson, M. R. Taghizadeh, T. M. Lightbody, P. Blair, B. Layet, N. Watson, I. Barton, G. Robb, J. McMonagle, “Diffractive optics development for application on high-power solid state lasers,” in First International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, H. T. Powell, eds., Proc. SPIE2633, 129–140 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the NIF final optics assembly showing the location and element geometry of the diffractive optics.

Fig. 2
Fig. 2

BSG profiles measured by AFM on different CSG steps, which are imaged by white-light interferometry. BSG profiles are altered slightly by propagation during wet etching of CSG features. The initial grating aspect ratio (height/width) is approximately 0.015.

Fig. 3
Fig. 3

Diffraction efficiency, at -1 transmitted order and 351-nm wavelength, of the BSG manufactured on a 5-cm-diameter fused-silica substrate (a) before and (b) after the CSG manufacture on the same surface. Input and output surfaces are uncoated.

Fig. 4
Fig. 4

Zero-order transmission efficiency at 1053, 527, and 351 nm for a combined BSG–CSG optic, 14° incidence angle. Front and rear surfaces are uncoated, and values are not corrected for Fresnel losses.

Fig. 5
Fig. 5

BSG and CSG profiles on another combined grating. The initial grating aspect ratio is approximately 0.06. Grating profiles are significantly altered and are measurably smaller on the deepest CSG step.

Fig. 6
Fig. 6

Initial grating profiles compared with final grating profiles after etching 1500 nm into bulk SiO2: (a) initial aspect ratio of 0.015 (comparable with the profiles of Fig. 2) and (b) initial aspect ratio of 0.06 (comparable with the profiles of Fig. 5).

Fig. 7
Fig. 7

(a) Grating profile after etching to a point beyond which the height decreases. (b) Dimensionless etch depth (scaled with the initial feature height) corresponding to the profile of (a) as a function of the initial grating aspect ratio A.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y * t * = - R x ,   t 1 + y * x * 2 1 / 2 ,
y t = - 1 + A 2 y x 2 1 / 2 ,
y 0 x = 0.5 1 + x | x | tanh   0.2 | x | ,     - 5 < x < 5 ,

Metrics