Abstract

To image extrasolar planets at their large contrast, high-resolution adaptive optics (AO) is needed to correct atmospheric seeing. The 1.5-m AO system at the Starfire Optical Range was used to confirm theoretical models. Halo levels were reduced by a factor of 4, on average, from 0.5 to 3.0 arc sec radius, which when combined with the increased Strehl ratio improved the gain by a factor of 80. Speckle lifetimes ranged from 5 to 30 ms at 0.3 arc sec, which is much longer than the 0.6-ms AO update time. These results show good agreement with predictions for current technology and reveal no limitations, in principle, to the detection of planets by use of AO systems with higher speeds and resolutions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription