Abstract

To image extrasolar planets at their large contrast, high-resolution adaptive optics (AO) is needed to correct atmospheric seeing. The 1.5-m AO system at the Starfire Optical Range was used to confirm theoretical models. Halo levels were reduced by a factor of 4, on average, from 0.5 to 3.0 arc sec radius, which when combined with the increased Strehl ratio improved the gain by a factor of 80. Speckle lifetimes ranged from 5 to 30 ms at 0.3 arc sec, which is much longer than the 0.6-ms AO update time. These results show good agreement with predictions for current technology and reveal no limitations, in principle, to the detection of planets by use of AO systems with higher speeds and resolutions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Wolszczan, D. A. Frail, “A planetary system around the millisecond pulsar PSR1257 + 12,” Nature (London) 355, 145–147 (1992).
    [CrossRef]
  2. M. Bailes, A. G. Lyne, S. L. Shemar, “A planet orbiting the neutron star PSR1829-10,” Nature (London) 352, 311–313 (1991).
    [CrossRef]
  3. M. Mayor, D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature (London) 378, 355–359 (1995).
    [CrossRef]
  4. G. W. Marcy, R. P. Butler, “A planetary companion to 70 Vir,” Astrophys. J. 464, L147–L151 (1996).
    [CrossRef]
  5. J. R. P. Angel, “Use of a 16 m telescope to detect earthlike planets,” Proceedings of the Workshop on the Next Generation Space Telescope, P. Bely, C. J. Burrows, eds. (Space Telescope Science Institute, Baltimore, Md., 1990), pp. 81–94.
  6. R. N. Bracewell, R. H. MacPhie, “Searching for nonsolar planets,” Icarus 38, 136–147 (1979).
    [CrossRef]
  7. C. E. Knight, “Methods of detecting extrasolar planets,” Icarus 30, 422–433 (1977).
    [CrossRef]
  8. D. C. Black, R. Piziali, “Project Orion: a design study of a system for detecting extrasolar planets,” NASA Spec. Publ. 436 (1980).
  9. D. J. Schroeder, D. A. Golimowski, “Searching for faint companions to nearby star with the Hubble Space Telescope,” Publ. Astron. Soc. Pac. 108, 510–519 (1996).
    [CrossRef]
  10. D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wavefront corrector using addressable liquid crystal retarders: II,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
    [CrossRef]
  11. G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photonics News 6, 16–21 (1995).
    [CrossRef]
  12. M. C. Roggemann, D. J. Lee, “Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere,” Appl. Opt. 37, 4577–4585 (1998).
    [CrossRef]
  13. J. R. P. Angel, “Ground-based imaging of extrasolar planets using adaptive optics,” Nature (London) 368, 203–207 (1994).
    [CrossRef]
  14. S. M. Stahl, D. G. Sandler, “Optimization and performance of adaptive optics for imaging extrasolar planets,” Astrophys. J. 454, L153–L156 (1995).
    [CrossRef]
  15. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).
  16. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966).
    [CrossRef]
  17. R. V. Shack, B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (Abstract) (1971).
  18. D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited imaging with 8-m telescopes,” J. Opt. Soc. Am. 11, 925–945 (1994).
    [CrossRef]
  19. R. R. Parenti, “Adaptive optics for astronomy,” Lincoln Lab. J. 5, 93–113 (1992).
  20. J. R. P. Angel, “Optimization of wavefront sensors for the highest accuracy and sensitivity,” in Proceedings of NATO Advanced Study Institute on Adaptive Optics for Astronomy: Cargese, D. Alloin, J.-M. Marriott, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 139–147.
    [CrossRef]
  21. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. 67, 390–392 (1977).
    [CrossRef]
  22. Unless stated otherwise, all the parameters in this paper are given assuming a wavelength of 0.5 μm and a zenith angle of 0°.
  23. J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Ann. Rev. Astron. Astrophys. 31, 13–62 (1993).
    [CrossRef]
  24. N. J. Woolf, “High resolution imaging from the ground,” Ann. Rev. Astron. Astrophys. 20, 367–398 (1982).
    [CrossRef]
  25. M. Roggemann, B. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
    [CrossRef]
  26. L. M. Close, “High resolution near-infrared imaging with tip-tilt adaptive optics,” Ph.D. dissertation (College of Arts and Sciences, University of Arizona, Tucson, Ariz., 1995).
  27. T. Okamoto, T. Asakura, “Effects of imaging properties on dynamic speckles produced by a set of moving phase screens,” Waves Random Media 2, 49–65 (1992).
    [CrossRef]
  28. T. Nakajima, B. R. Oppenheimer, S. R. Kulkarni, D. A. Golimowski, K. Matthews, S. T. Durrance, “Discovery of a cool brown dwarf,” Nature (London) Lett. 378, 463–465 (1995).
    [CrossRef]

1998 (1)

1997 (1)

M. Roggemann, B. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
[CrossRef]

1996 (2)

G. W. Marcy, R. P. Butler, “A planetary companion to 70 Vir,” Astrophys. J. 464, L147–L151 (1996).
[CrossRef]

D. J. Schroeder, D. A. Golimowski, “Searching for faint companions to nearby star with the Hubble Space Telescope,” Publ. Astron. Soc. Pac. 108, 510–519 (1996).
[CrossRef]

1995 (4)

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photonics News 6, 16–21 (1995).
[CrossRef]

M. Mayor, D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature (London) 378, 355–359 (1995).
[CrossRef]

T. Nakajima, B. R. Oppenheimer, S. R. Kulkarni, D. A. Golimowski, K. Matthews, S. T. Durrance, “Discovery of a cool brown dwarf,” Nature (London) Lett. 378, 463–465 (1995).
[CrossRef]

S. M. Stahl, D. G. Sandler, “Optimization and performance of adaptive optics for imaging extrasolar planets,” Astrophys. J. 454, L153–L156 (1995).
[CrossRef]

1994 (2)

J. R. P. Angel, “Ground-based imaging of extrasolar planets using adaptive optics,” Nature (London) 368, 203–207 (1994).
[CrossRef]

D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited imaging with 8-m telescopes,” J. Opt. Soc. Am. 11, 925–945 (1994).
[CrossRef]

1993 (1)

J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Ann. Rev. Astron. Astrophys. 31, 13–62 (1993).
[CrossRef]

1992 (3)

R. R. Parenti, “Adaptive optics for astronomy,” Lincoln Lab. J. 5, 93–113 (1992).

T. Okamoto, T. Asakura, “Effects of imaging properties on dynamic speckles produced by a set of moving phase screens,” Waves Random Media 2, 49–65 (1992).
[CrossRef]

A. Wolszczan, D. A. Frail, “A planetary system around the millisecond pulsar PSR1257 + 12,” Nature (London) 355, 145–147 (1992).
[CrossRef]

1991 (1)

M. Bailes, A. G. Lyne, S. L. Shemar, “A planet orbiting the neutron star PSR1829-10,” Nature (London) 352, 311–313 (1991).
[CrossRef]

1982 (1)

N. J. Woolf, “High resolution imaging from the ground,” Ann. Rev. Astron. Astrophys. 20, 367–398 (1982).
[CrossRef]

1980 (1)

D. C. Black, R. Piziali, “Project Orion: a design study of a system for detecting extrasolar planets,” NASA Spec. Publ. 436 (1980).

1979 (1)

R. N. Bracewell, R. H. MacPhie, “Searching for nonsolar planets,” Icarus 38, 136–147 (1979).
[CrossRef]

1977 (2)

C. E. Knight, “Methods of detecting extrasolar planets,” Icarus 30, 422–433 (1977).
[CrossRef]

D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. 67, 390–392 (1977).
[CrossRef]

1971 (1)

R. V. Shack, B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (Abstract) (1971).

1966 (1)

Angel, J. R. P.

J. R. P. Angel, “Ground-based imaging of extrasolar planets using adaptive optics,” Nature (London) 368, 203–207 (1994).
[CrossRef]

D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited imaging with 8-m telescopes,” J. Opt. Soc. Am. 11, 925–945 (1994).
[CrossRef]

J. R. P. Angel, “Optimization of wavefront sensors for the highest accuracy and sensitivity,” in Proceedings of NATO Advanced Study Institute on Adaptive Optics for Astronomy: Cargese, D. Alloin, J.-M. Marriott, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 139–147.
[CrossRef]

J. R. P. Angel, “Use of a 16 m telescope to detect earthlike planets,” Proceedings of the Workshop on the Next Generation Space Telescope, P. Bely, C. J. Burrows, eds. (Space Telescope Science Institute, Baltimore, Md., 1990), pp. 81–94.

Asakura, T.

T. Okamoto, T. Asakura, “Effects of imaging properties on dynamic speckles produced by a set of moving phase screens,” Waves Random Media 2, 49–65 (1992).
[CrossRef]

Bailes, M.

M. Bailes, A. G. Lyne, S. L. Shemar, “A planet orbiting the neutron star PSR1829-10,” Nature (London) 352, 311–313 (1991).
[CrossRef]

Beckers, J. M.

J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Ann. Rev. Astron. Astrophys. 31, 13–62 (1993).
[CrossRef]

Biliotti, V.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wavefront corrector using addressable liquid crystal retarders: II,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Black, D. C.

D. C. Black, R. Piziali, “Project Orion: a design study of a system for detecting extrasolar planets,” NASA Spec. Publ. 436 (1980).

Bonaccini, D.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wavefront corrector using addressable liquid crystal retarders: II,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).

Bracewell, R. N.

R. N. Bracewell, R. H. MacPhie, “Searching for nonsolar planets,” Icarus 38, 136–147 (1979).
[CrossRef]

Brusa, G.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wavefront corrector using addressable liquid crystal retarders: II,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Butler, R. P.

G. W. Marcy, R. P. Butler, “A planetary companion to 70 Vir,” Astrophys. J. 464, L147–L151 (1996).
[CrossRef]

Close, L. M.

L. M. Close, “High resolution near-infrared imaging with tip-tilt adaptive optics,” Ph.D. dissertation (College of Arts and Sciences, University of Arizona, Tucson, Ariz., 1995).

Durrance, S. T.

T. Nakajima, B. R. Oppenheimer, S. R. Kulkarni, D. A. Golimowski, K. Matthews, S. T. Durrance, “Discovery of a cool brown dwarf,” Nature (London) Lett. 378, 463–465 (1995).
[CrossRef]

Esposito, S.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wavefront corrector using addressable liquid crystal retarders: II,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Fender, J. S.

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photonics News 6, 16–21 (1995).
[CrossRef]

Frail, D. A.

A. Wolszczan, D. A. Frail, “A planetary system around the millisecond pulsar PSR1257 + 12,” Nature (London) 355, 145–147 (1992).
[CrossRef]

Fried, D. L.

Fugate, R. Q.

M. Roggemann, B. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
[CrossRef]

Golimowski, D. A.

D. J. Schroeder, D. A. Golimowski, “Searching for faint companions to nearby star with the Hubble Space Telescope,” Publ. Astron. Soc. Pac. 108, 510–519 (1996).
[CrossRef]

T. Nakajima, B. R. Oppenheimer, S. R. Kulkarni, D. A. Golimowski, K. Matthews, S. T. Durrance, “Discovery of a cool brown dwarf,” Nature (London) Lett. 378, 463–465 (1995).
[CrossRef]

Greenwood, D. P.

Knight, C. E.

C. E. Knight, “Methods of detecting extrasolar planets,” Icarus 30, 422–433 (1977).
[CrossRef]

Kulkarni, S. R.

T. Nakajima, B. R. Oppenheimer, S. R. Kulkarni, D. A. Golimowski, K. Matthews, S. T. Durrance, “Discovery of a cool brown dwarf,” Nature (London) Lett. 378, 463–465 (1995).
[CrossRef]

Lee, D. J.

Lloyd-Hart, M.

D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited imaging with 8-m telescopes,” J. Opt. Soc. Am. 11, 925–945 (1994).
[CrossRef]

Love, G. D.

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photonics News 6, 16–21 (1995).
[CrossRef]

Lyne, A. G.

M. Bailes, A. G. Lyne, S. L. Shemar, “A planet orbiting the neutron star PSR1829-10,” Nature (London) 352, 311–313 (1991).
[CrossRef]

MacPhie, R. H.

R. N. Bracewell, R. H. MacPhie, “Searching for nonsolar planets,” Icarus 38, 136–147 (1979).
[CrossRef]

Marcy, G. W.

G. W. Marcy, R. P. Butler, “A planetary companion to 70 Vir,” Astrophys. J. 464, L147–L151 (1996).
[CrossRef]

Matthews, K.

T. Nakajima, B. R. Oppenheimer, S. R. Kulkarni, D. A. Golimowski, K. Matthews, S. T. Durrance, “Discovery of a cool brown dwarf,” Nature (London) Lett. 378, 463–465 (1995).
[CrossRef]

Mayor, M.

M. Mayor, D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature (London) 378, 355–359 (1995).
[CrossRef]

McCarthy, D.

D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited imaging with 8-m telescopes,” J. Opt. Soc. Am. 11, 925–945 (1994).
[CrossRef]

Nakajima, T.

T. Nakajima, B. R. Oppenheimer, S. R. Kulkarni, D. A. Golimowski, K. Matthews, S. T. Durrance, “Discovery of a cool brown dwarf,” Nature (London) Lett. 378, 463–465 (1995).
[CrossRef]

Okamoto, T.

T. Okamoto, T. Asakura, “Effects of imaging properties on dynamic speckles produced by a set of moving phase screens,” Waves Random Media 2, 49–65 (1992).
[CrossRef]

Oppenheimer, B. R.

T. Nakajima, B. R. Oppenheimer, S. R. Kulkarni, D. A. Golimowski, K. Matthews, S. T. Durrance, “Discovery of a cool brown dwarf,” Nature (London) Lett. 378, 463–465 (1995).
[CrossRef]

Parenti, R. R.

R. R. Parenti, “Adaptive optics for astronomy,” Lincoln Lab. J. 5, 93–113 (1992).

Piziali, R.

D. C. Black, R. Piziali, “Project Orion: a design study of a system for detecting extrasolar planets,” NASA Spec. Publ. 436 (1980).

Platt, B. C.

R. V. Shack, B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (Abstract) (1971).

Queloz, D.

M. Mayor, D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature (London) 378, 355–359 (1995).
[CrossRef]

Restaino, S. R.

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photonics News 6, 16–21 (1995).
[CrossRef]

Roggemann, M.

M. Roggemann, B. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
[CrossRef]

Roggemann, M. C.

Salinari, P.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wavefront corrector using addressable liquid crystal retarders: II,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Sandler, D. G.

S. M. Stahl, D. G. Sandler, “Optimization and performance of adaptive optics for imaging extrasolar planets,” Astrophys. J. 454, L153–L156 (1995).
[CrossRef]

D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited imaging with 8-m telescopes,” J. Opt. Soc. Am. 11, 925–945 (1994).
[CrossRef]

Schroeder, D. J.

D. J. Schroeder, D. A. Golimowski, “Searching for faint companions to nearby star with the Hubble Space Telescope,” Publ. Astron. Soc. Pac. 108, 510–519 (1996).
[CrossRef]

Shack, R. V.

R. V. Shack, B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (Abstract) (1971).

Shemar, S. L.

M. Bailes, A. G. Lyne, S. L. Shemar, “A planet orbiting the neutron star PSR1829-10,” Nature (London) 352, 311–313 (1991).
[CrossRef]

Stahl, S.

D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited imaging with 8-m telescopes,” J. Opt. Soc. Am. 11, 925–945 (1994).
[CrossRef]

Stahl, S. M.

S. M. Stahl, D. G. Sandler, “Optimization and performance of adaptive optics for imaging extrasolar planets,” Astrophys. J. 454, L153–L156 (1995).
[CrossRef]

Stefanini, P.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wavefront corrector using addressable liquid crystal retarders: II,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Welsh, B.

M. Roggemann, B. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).

Wolszczan, A.

A. Wolszczan, D. A. Frail, “A planetary system around the millisecond pulsar PSR1257 + 12,” Nature (London) 355, 145–147 (1992).
[CrossRef]

Woolf, N. J.

N. J. Woolf, “High resolution imaging from the ground,” Ann. Rev. Astron. Astrophys. 20, 367–398 (1982).
[CrossRef]

Ann. Rev. Astron. Astrophys. (2)

J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Ann. Rev. Astron. Astrophys. 31, 13–62 (1993).
[CrossRef]

N. J. Woolf, “High resolution imaging from the ground,” Ann. Rev. Astron. Astrophys. 20, 367–398 (1982).
[CrossRef]

Appl. Opt. (1)

Astrophys. J. (2)

G. W. Marcy, R. P. Butler, “A planetary companion to 70 Vir,” Astrophys. J. 464, L147–L151 (1996).
[CrossRef]

S. M. Stahl, D. G. Sandler, “Optimization and performance of adaptive optics for imaging extrasolar planets,” Astrophys. J. 454, L153–L156 (1995).
[CrossRef]

Icarus (2)

R. N. Bracewell, R. H. MacPhie, “Searching for nonsolar planets,” Icarus 38, 136–147 (1979).
[CrossRef]

C. E. Knight, “Methods of detecting extrasolar planets,” Icarus 30, 422–433 (1977).
[CrossRef]

J. Opt. Soc. Am. (4)

R. V. Shack, B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (Abstract) (1971).

D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited imaging with 8-m telescopes,” J. Opt. Soc. Am. 11, 925–945 (1994).
[CrossRef]

D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966).
[CrossRef]

D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. 67, 390–392 (1977).
[CrossRef]

Lincoln Lab. J. (1)

R. R. Parenti, “Adaptive optics for astronomy,” Lincoln Lab. J. 5, 93–113 (1992).

NASA Spec. Publ. (1)

D. C. Black, R. Piziali, “Project Orion: a design study of a system for detecting extrasolar planets,” NASA Spec. Publ. 436 (1980).

Nature (London) (4)

A. Wolszczan, D. A. Frail, “A planetary system around the millisecond pulsar PSR1257 + 12,” Nature (London) 355, 145–147 (1992).
[CrossRef]

M. Bailes, A. G. Lyne, S. L. Shemar, “A planet orbiting the neutron star PSR1829-10,” Nature (London) 352, 311–313 (1991).
[CrossRef]

M. Mayor, D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature (London) 378, 355–359 (1995).
[CrossRef]

J. R. P. Angel, “Ground-based imaging of extrasolar planets using adaptive optics,” Nature (London) 368, 203–207 (1994).
[CrossRef]

Nature (London) Lett. (1)

T. Nakajima, B. R. Oppenheimer, S. R. Kulkarni, D. A. Golimowski, K. Matthews, S. T. Durrance, “Discovery of a cool brown dwarf,” Nature (London) Lett. 378, 463–465 (1995).
[CrossRef]

Opt. Photonics News (1)

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photonics News 6, 16–21 (1995).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

D. J. Schroeder, D. A. Golimowski, “Searching for faint companions to nearby star with the Hubble Space Telescope,” Publ. Astron. Soc. Pac. 108, 510–519 (1996).
[CrossRef]

Rev. Mod. Phys. (1)

M. Roggemann, B. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
[CrossRef]

Waves Random Media (1)

T. Okamoto, T. Asakura, “Effects of imaging properties on dynamic speckles produced by a set of moving phase screens,” Waves Random Media 2, 49–65 (1992).
[CrossRef]

Other (6)

L. M. Close, “High resolution near-infrared imaging with tip-tilt adaptive optics,” Ph.D. dissertation (College of Arts and Sciences, University of Arizona, Tucson, Ariz., 1995).

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wavefront corrector using addressable liquid crystal retarders: II,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

J. R. P. Angel, “Use of a 16 m telescope to detect earthlike planets,” Proceedings of the Workshop on the Next Generation Space Telescope, P. Bely, C. J. Burrows, eds. (Space Telescope Science Institute, Baltimore, Md., 1990), pp. 81–94.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).

J. R. P. Angel, “Optimization of wavefront sensors for the highest accuracy and sensitivity,” in Proceedings of NATO Advanced Study Institute on Adaptive Optics for Astronomy: Cargese, D. Alloin, J.-M. Marriott, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 139–147.
[CrossRef]

Unless stated otherwise, all the parameters in this paper are given assuming a wavelength of 0.5 μm and a zenith angle of 0°.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the optical path leading to the detectors.

Fig. 2
Fig. 2

Encircled energy for HR483 at 0.55 μm with tilt correction only and with full AO.

Fig. 3
Fig. 3

HR2134 profiles at 1.6 μm normalized to the theoretical diffraction-limited peak. All results given in this article are azimuthally averaged. The fully corrected profile has a sharp peak on a broad halo. The tilt-corrected profile is still roughly Gaussian; although, it has a sharper peak than the theoretical uncorrected Kolmogorov profile, which assumes r 0 = 17 cm in H band.

Fig. 4
Fig. 4

Halo temporal fluctuations at 0.55 μm normalized to the mean irradiance of the peak. (top) Profiles for a sequence of exposure times. (bottom) Legend numbers are the radius of each curve given in milliarcseconds.

Fig. 5
Fig. 5

Halo fluctuation correlation times at 0.55 μm.

Fig. 6
Fig. 6

Halo spatial and temporal fluctuations at 0.55 μm normalized to the mean irradiance of the peak. (top) Profiles for a sequence of exposure times. (bottom) Legend numbers are the radius of each curve given in milliarcseconds.

Fig. 7
Fig. 7

Sirius in H band.

Fig. 8
Fig. 8

Maximum magnitude difference for a 5σ detection of a companion to HR1925 in H band. The ratio of the curves including spatial and temporal fluctuations (SP+TE) to the curve including temporal fluctuations only (TE) indicates the relative importance of the two kinds of noise.

Fig. 9
Fig. 9

Magnitude difference between a 5σ companion and its star in H band. Curves at <2.5 arc sec are unreliable, owing to inexact correction for a chrome dot.

Fig. 10
Fig. 10

Absolute magnitude of 5σ companions in H band.

Tables (2)

Tables Icon

Table 1 Predicted Strehl Ratios at the SOR

Tables Icon

Table 2 Imaging Detector Parameters at the SOR

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g D 2 d 2 f D d σ 2 ,
T = τ R   SNR p g   SNR f 2 ,
τ = σ N σ 1 2 NT ,

Metrics