Abstract

The atmospheric aerosol optical depth (AOD) weighted over the solar spectrum is equal to the monochromatic AOD at a certain wavelength. This key wavelength is ∼0.7 μm, which is only slightly influenced by air mass and aerosol content. On the basis of this result, simple relations are proposed to predict monochromatic AOD from pyrheliometric data and vice versa. The accuracy achieved is close to ±0.01 units of AOD at ∼0.7 μm, estimated from simultaneous sunphotometer data. The precision required for the estimation of the precipitable water-vapor content is approximately ±0.5 cm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
    [CrossRef]
  2. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
    [CrossRef] [PubMed]
  3. T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sunphotometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
    [CrossRef] [PubMed]
  4. F. Linke, “Transmissions-koeffizient und trübungsfaktor,” Beitr. Phys. Fr. Atmos. 10, 91–103 (1922).
  5. M. M. Unsworth, J. L. Monteith, “Aerosol and solar radiation in Britain,” Q. J. R. Meteorol. Soc. 98, 778–797 (1972).
    [CrossRef]
  6. F. E. Volz, “Atmospheric turbidity after the Agung eruption of 1963 and size distribution of the volcanic aerosol,” J. Geophys. Res. 75, 5185–5193 (1970).
    [CrossRef]
  7. R. B. Stothers, “Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheliometric period, 1881–1960,” J. Geophys. Res. 101, 3901–3920 (1996).
    [CrossRef]
  8. J. C. Grenier, A. DeLaCasiniere, T. Cabot, “A spectral model of Linke’s turbidity factor and its experimental implications,” Sol. Energy 52, 303–314 (1994).
    [CrossRef]
  9. C. Gueymard, “Turbidity determination from broadband irradiance measurements: a detailed multi-coefficient approach,” J. Appl. Meteorol. 37, 414–435 (1998).
    [CrossRef]
  10. J. P. Blanchet, “Application of the Chandrasekhar mean to aerosol optical parameters,” Atmos. Ocean 20, 189–206 (1982).
    [CrossRef]
  11. B. W. Forgan, “Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol: comment,” Appl. Opt. 27, 2546–2548 (1988).
    [CrossRef] [PubMed]
  12. B. Molineaux, P. Ineichen, “On the broad band transmittance of direct solar radiation in a cloudless sky and its application to the parameterization of atmospheric turbidity,” Sol. Energy 56, 553–563 (1996).
    [CrossRef]
  13. J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. J. Herman, A. Ben-David, “Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broadband and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. GE-25, 647–653 (1987).
    [CrossRef]
  14. C. E. Junge, Air Chemistry and Radioactivity (Academic, New York, 1963).
  15. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Lab., Hanscom Air Force Base, Mass., 1979).
  16. A. Deepak, H. E. Gerber, eds., Experts Meeting on Aerosols and their Climatic Effects (World Meteorological Organization, Geneva, 1983), call number WCP-55.
  17. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  18. A. K. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. 11, 156–166 (1929).
    [CrossRef]
  19. C. Tomasi, E. Caroli, V. Vizale, “Study of the relationship between Ångström’s wavelength exponent and Junge particle size distribution exponent,” J. Climate Applied Meteor. 22, 1707–1716 (1983).
    [CrossRef]
  20. N. O’Neill, A. Royer, “Extraction of bimodal aerosol-size distribution radii from spectral and angular slope (Ångström) coefficients,” Appl. Opt. 32, 1642–1645 (1993).
    [CrossRef]
  21. M. R. Spiegel, Theory and Problems of Advanced Calculus (McGraw-Hill, New York, 1973).
  22. P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).
  23. A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for LOWTRAN 7,” GL-TR-89-0122 (1989), updated and commercialized by Ontar Corporation, 9 Village Way, North Andover, Mass. 01845 (1996).
  24. C. Gueymard, “smarts2, a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment,” Rep. FSEC-PF-270-95 (Florida Solar Energy Center, Cape Canaveral, Florida 32920, 1995).
  25. B. Molineaux, “Modélisation de la transmission atmosphérique du rayonnement solaire” (Ph.D. dissertation, University of Geneva, Geneva, Switzerland, 1997).
  26. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).
  27. L. Harrison, J. Michalsky, J. Berndt, “Automated multifilter shadow-band radiometer: an instrument for optical depth and radiation measurements,” Appl. Opt. 33, 5118–5125 (1994).
    [CrossRef] [PubMed]
  28. F. Bason, SolData instruments, Linabakken 13, DK-8600 Silkeborg, Denmark, personal communications (1995).
  29. B. W. Forgan, “General method for calibrating sunphotometers,” Appl. Opt. 33, 4841–4850 (1994).
    [CrossRef] [PubMed]
  30. J. A. Reagan, K. J. Thome, B. M. Herman, “A simple instrument for measuring columnar water vapor via near-IR differential solar transmission measurements,” IEEE Trans. Geosci. Remote Sens. 30, 825–831 (1992).
    [CrossRef]
  31. International Commission on Illumination, Guide to Recommended Practice of Daylight Measurement (CIE Central Bureau, Vienna, 1994).
  32. J. Wright, R. Perez, J. Michalsky, “Luminous efficacy of direct irradiance: variations with insolation and moisture conditions,” Sol. Energy 42, 387–394 (1989).
    [CrossRef]
  33. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]

1998 (1)

C. Gueymard, “Turbidity determination from broadband irradiance measurements: a detailed multi-coefficient approach,” J. Appl. Meteorol. 37, 414–435 (1998).
[CrossRef]

1996 (3)

B. Molineaux, P. Ineichen, “On the broad band transmittance of direct solar radiation in a cloudless sky and its application to the parameterization of atmospheric turbidity,” Sol. Energy 56, 553–563 (1996).
[CrossRef]

R. B. Stothers, “Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheliometric period, 1881–1960,” J. Geophys. Res. 101, 3901–3920 (1996).
[CrossRef]

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

1994 (5)

1993 (1)

1992 (2)

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

J. A. Reagan, K. J. Thome, B. M. Herman, “A simple instrument for measuring columnar water vapor via near-IR differential solar transmission measurements,” IEEE Trans. Geosci. Remote Sens. 30, 825–831 (1992).
[CrossRef]

1989 (1)

J. Wright, R. Perez, J. Michalsky, “Luminous efficacy of direct irradiance: variations with insolation and moisture conditions,” Sol. Energy 42, 387–394 (1989).
[CrossRef]

1988 (1)

1987 (1)

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. J. Herman, A. Ben-David, “Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broadband and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. GE-25, 647–653 (1987).
[CrossRef]

1983 (1)

C. Tomasi, E. Caroli, V. Vizale, “Study of the relationship between Ångström’s wavelength exponent and Junge particle size distribution exponent,” J. Climate Applied Meteor. 22, 1707–1716 (1983).
[CrossRef]

1982 (1)

J. P. Blanchet, “Application of the Chandrasekhar mean to aerosol optical parameters,” Atmos. Ocean 20, 189–206 (1982).
[CrossRef]

1974 (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

1972 (1)

M. M. Unsworth, J. L. Monteith, “Aerosol and solar radiation in Britain,” Q. J. R. Meteorol. Soc. 98, 778–797 (1972).
[CrossRef]

1970 (1)

F. E. Volz, “Atmospheric turbidity after the Agung eruption of 1963 and size distribution of the volcanic aerosol,” J. Geophys. Res. 75, 5185–5193 (1970).
[CrossRef]

1929 (1)

A. K. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. 11, 156–166 (1929).
[CrossRef]

1922 (1)

F. Linke, “Transmissions-koeffizient und trübungsfaktor,” Beitr. Phys. Fr. Atmos. 10, 91–103 (1922).

Ångström, A. K.

A. K. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. 11, 156–166 (1929).
[CrossRef]

Bason, F.

F. Bason, SolData instruments, Linabakken 13, DK-8600 Silkeborg, Denmark, personal communications (1995).

Bauman, J. J.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Ben-David, A.

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. J. Herman, A. Ben-David, “Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broadband and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. GE-25, 647–653 (1987).
[CrossRef]

Bergstrom, R. W.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for LOWTRAN 7,” GL-TR-89-0122 (1989), updated and commercialized by Ontar Corporation, 9 Village Way, North Andover, Mass. 01845 (1996).

Berndt, J.

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for LOWTRAN 7,” GL-TR-89-0122 (1989), updated and commercialized by Ontar Corporation, 9 Village Way, North Andover, Mass. 01845 (1996).

Blanchet, J. P.

J. P. Blanchet, “Application of the Chandrasekhar mean to aerosol optical parameters,” Atmos. Ocean 20, 189–206 (1982).
[CrossRef]

Brooks, S. L.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Cabot, T.

J. C. Grenier, A. DeLaCasiniere, T. Cabot, “A spectral model of Linke’s turbidity factor and its experimental implications,” Sol. Energy 52, 303–314 (1994).
[CrossRef]

Caroli, E.

C. Tomasi, E. Caroli, V. Vizale, “Study of the relationship between Ångström’s wavelength exponent and Junge particle size distribution exponent,” J. Climate Applied Meteor. 22, 1707–1716 (1983).
[CrossRef]

Charlson, R. J.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Coackley, J. A.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Cress, R. D.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).

DeLaCasiniere, A.

J. C. Grenier, A. DeLaCasiniere, T. Cabot, “A spectral model of Linke’s turbidity factor and its experimental implications,” Sol. Energy 52, 303–314 (1994).
[CrossRef]

DeLuisi, J. J.

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

Deshler, T.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Dutton, E. G.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Lab., Hanscom Air Force Base, Mass., 1979).

Forgan, B. W.

Grenier, J. C.

J. C. Grenier, A. DeLaCasiniere, T. Cabot, “A spectral model of Linke’s turbidity factor and its experimental implications,” Sol. Energy 52, 303–314 (1994).
[CrossRef]

Gueymard, C.

C. Gueymard, “Turbidity determination from broadband irradiance measurements: a detailed multi-coefficient approach,” J. Appl. Meteorol. 37, 414–435 (1998).
[CrossRef]

C. Gueymard, “smarts2, a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment,” Rep. FSEC-PF-270-95 (Florida Solar Energy Center, Cape Canaveral, Florida 32920, 1995).

Hales, J. M.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Hamil, P.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Hansen, J. E.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Harrison, L.

Hayasaka, T.

Herman, B. J.

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. J. Herman, A. Ben-David, “Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broadband and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. GE-25, 647–653 (1987).
[CrossRef]

Herman, B. M.

J. A. Reagan, K. J. Thome, B. M. Herman, “A simple instrument for measuring columnar water vapor via near-IR differential solar transmission measurements,” IEEE Trans. Geosci. Remote Sens. 30, 825–831 (1992).
[CrossRef]

Hofman, D. J.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Ineichen, P.

B. Molineaux, P. Ineichen, “On the broad band transmittance of direct solar radiation in a cloudless sky and its application to the parameterization of atmospheric turbidity,” Sol. Energy 56, 553–563 (1996).
[CrossRef]

Junge, C. E.

C. E. Junge, Air Chemistry and Radioactivity (Academic, New York, 1963).

Linke, F.

F. Linke, “Transmissions-koeffizient und trübungsfaktor,” Beitr. Phys. Fr. Atmos. 10, 91–103 (1922).

Livingston, J. M.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Michalsky, J.

L. Harrison, J. Michalsky, J. Berndt, “Automated multifilter shadow-band radiometer: an instrument for optical depth and radiation measurements,” Appl. Opt. 33, 5118–5125 (1994).
[CrossRef] [PubMed]

J. Wright, R. Perez, J. Michalsky, “Luminous efficacy of direct irradiance: variations with insolation and moisture conditions,” Sol. Energy 42, 387–394 (1989).
[CrossRef]

Molineaux, B.

B. Molineaux, P. Ineichen, “On the broad band transmittance of direct solar radiation in a cloudless sky and its application to the parameterization of atmospheric turbidity,” Sol. Energy 56, 553–563 (1996).
[CrossRef]

B. Molineaux, “Modélisation de la transmission atmosphérique du rayonnement solaire” (Ph.D. dissertation, University of Geneva, Geneva, Switzerland, 1997).

Monteith, J. L.

M. M. Unsworth, J. L. Monteith, “Aerosol and solar radiation in Britain,” Q. J. R. Meteorol. Soc. 98, 778–797 (1972).
[CrossRef]

O’Neill, N.

Perez, R.

J. Wright, R. Perez, J. Michalsky, “Luminous efficacy of direct irradiance: variations with insolation and moisture conditions,” Sol. Energy 42, 387–394 (1989).
[CrossRef]

Pilewskie, P. A.

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. J. Herman, A. Ben-David, “Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broadband and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. GE-25, 647–653 (1987).
[CrossRef]

Pollack, J. B.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Pueschel, R. F.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Reagan, J. A.

J. A. Reagan, K. J. Thome, B. M. Herman, “A simple instrument for measuring columnar water vapor via near-IR differential solar transmission measurements,” IEEE Trans. Geosci. Remote Sens. 30, 825–831 (1992).
[CrossRef]

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. J. Herman, A. Ben-David, “Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broadband and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. GE-25, 647–653 (1987).
[CrossRef]

Reddy, P.

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for LOWTRAN 7,” GL-TR-89-0122 (1989), updated and commercialized by Ontar Corporation, 9 Village Way, North Andover, Mass. 01845 (1996).

Royer, A.

Russel, P. R.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Ryan, S.

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

Sasano, Y.

Schwartz, S. E.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Scott-Fleming, I. C.

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. J. Herman, A. Ben-David, “Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broadband and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. GE-25, 647–653 (1987).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Lab., Hanscom Air Force Base, Mass., 1979).

Spiegel, M. R.

M. R. Spiegel, Theory and Problems of Advanced Calculus (McGraw-Hill, New York, 1973).

Stothers, R. B.

R. B. Stothers, “Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheliometric period, 1881–1960,” J. Geophys. Res. 101, 3901–3920 (1996).
[CrossRef]

Stowe, L. L.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Takamura, T.

Thomason, L. W.

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

Thome, K. J.

J. A. Reagan, K. J. Thome, B. M. Herman, “A simple instrument for measuring columnar water vapor via near-IR differential solar transmission measurements,” IEEE Trans. Geosci. Remote Sens. 30, 825–831 (1992).
[CrossRef]

Tomasi, C.

C. Tomasi, E. Caroli, V. Vizale, “Study of the relationship between Ångström’s wavelength exponent and Junge particle size distribution exponent,” J. Climate Applied Meteor. 22, 1707–1716 (1983).
[CrossRef]

Travis, L. D.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Unsworth, M. M.

M. M. Unsworth, J. L. Monteith, “Aerosol and solar radiation in Britain,” Q. J. R. Meteorol. Soc. 98, 778–797 (1972).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

Vizale, V.

C. Tomasi, E. Caroli, V. Vizale, “Study of the relationship between Ångström’s wavelength exponent and Junge particle size distribution exponent,” J. Climate Applied Meteor. 22, 1707–1716 (1983).
[CrossRef]

Volz, F. E.

F. E. Volz, “Atmospheric turbidity after the Agung eruption of 1963 and size distribution of the volcanic aerosol,” J. Geophys. Res. 75, 5185–5193 (1970).
[CrossRef]

Wright, J.

J. Wright, R. Perez, J. Michalsky, “Luminous efficacy of direct irradiance: variations with insolation and moisture conditions,” Sol. Energy 42, 387–394 (1989).
[CrossRef]

Appl. Opt. (5)

Atmos. Ocean (1)

J. P. Blanchet, “Application of the Chandrasekhar mean to aerosol optical parameters,” Atmos. Ocean 20, 189–206 (1982).
[CrossRef]

Beitr. Phys. Fr. Atmos. (1)

F. Linke, “Transmissions-koeffizient und trübungsfaktor,” Beitr. Phys. Fr. Atmos. 10, 91–103 (1922).

Geogr. Ann. (1)

A. K. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. 11, 156–166 (1929).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. J. Herman, A. Ben-David, “Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broadband and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. GE-25, 647–653 (1987).
[CrossRef]

J. A. Reagan, K. J. Thome, B. M. Herman, “A simple instrument for measuring columnar water vapor via near-IR differential solar transmission measurements,” IEEE Trans. Geosci. Remote Sens. 30, 825–831 (1992).
[CrossRef]

J. Appl. Meteorol. (1)

C. Gueymard, “Turbidity determination from broadband irradiance measurements: a detailed multi-coefficient approach,” J. Appl. Meteorol. 37, 414–435 (1998).
[CrossRef]

J. Climate Applied Meteor. (1)

C. Tomasi, E. Caroli, V. Vizale, “Study of the relationship between Ångström’s wavelength exponent and Junge particle size distribution exponent,” J. Climate Applied Meteor. 22, 1707–1716 (1983).
[CrossRef]

J. Geophys. Res. (4)

P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).

F. E. Volz, “Atmospheric turbidity after the Agung eruption of 1963 and size distribution of the volcanic aerosol,” J. Geophys. Res. 75, 5185–5193 (1970).
[CrossRef]

R. B. Stothers, “Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheliometric period, 1881–1960,” J. Geophys. Res. 101, 3901–3920 (1996).
[CrossRef]

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

M. M. Unsworth, J. L. Monteith, “Aerosol and solar radiation in Britain,” Q. J. R. Meteorol. Soc. 98, 778–797 (1972).
[CrossRef]

Science (1)

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Sol. Energy (3)

J. Wright, R. Perez, J. Michalsky, “Luminous efficacy of direct irradiance: variations with insolation and moisture conditions,” Sol. Energy 42, 387–394 (1989).
[CrossRef]

J. C. Grenier, A. DeLaCasiniere, T. Cabot, “A spectral model of Linke’s turbidity factor and its experimental implications,” Sol. Energy 52, 303–314 (1994).
[CrossRef]

B. Molineaux, P. Ineichen, “On the broad band transmittance of direct solar radiation in a cloudless sky and its application to the parameterization of atmospheric turbidity,” Sol. Energy 56, 553–563 (1996).
[CrossRef]

Space Sci. Rev. (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other (11)

F. Bason, SolData instruments, Linabakken 13, DK-8600 Silkeborg, Denmark, personal communications (1995).

International Commission on Illumination, Guide to Recommended Practice of Daylight Measurement (CIE Central Bureau, Vienna, 1994).

M. R. Spiegel, Theory and Problems of Advanced Calculus (McGraw-Hill, New York, 1973).

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for LOWTRAN 7,” GL-TR-89-0122 (1989), updated and commercialized by Ontar Corporation, 9 Village Way, North Andover, Mass. 01845 (1996).

C. Gueymard, “smarts2, a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment,” Rep. FSEC-PF-270-95 (Florida Solar Energy Center, Cape Canaveral, Florida 32920, 1995).

B. Molineaux, “Modélisation de la transmission atmosphérique du rayonnement solaire” (Ph.D. dissertation, University of Geneva, Geneva, Switzerland, 1997).

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).

C. E. Junge, Air Chemistry and Radioactivity (Academic, New York, 1963).

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Lab., Hanscom Air Force Base, Mass., 1979).

A. Deepak, H. E. Gerber, eds., Experts Meeting on Aerosols and their Climatic Effects (World Meteorological Organization, Geneva, 1983), call number WCP-55.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

AOD versus wavelength for the standard reference atmosphere (SRA) aerosol components. All curves are normalized to yield a broadband AOD of 0.15 at air mass 2. The symbols are Mie simulations; the solid curves correspond to Eq. (13) with the coefficients of Table 1. Two of the curves are for comparative purposes only and do not represent realistic aerosol models: (i) the Rayleigh curve, which is nearly proportional to 1/λ4 and can be considered as the limit of steepest descent for such curves, and (ii) the dotted curve representing Mie simulations for a fictitious narrow size distribution of optically large aerosols (LND with σ = 1.5, r n = 1.7 μm, and m = 1.5 - 0i), which can be considered as near the limit of steepest increase for such curves.

Fig. 2
Fig. 2

Mie extinction efficiency (extinction cross section/πr 2) as a function of the Mie size parameter, for a real refractive index of 1.5.

Fig. 3
Fig. 3

Difference between panchromatic and monochromatic AOD versus wavelength for different values of AOD (at 0.7 μm). Shettle and Fenn rural aerosol model. Air mass, 2.

Fig. 4
Fig. 4

Key wavelength versus air mass and AOD at 0.7 μm for the Shettle and Fenn rural aerosol mixture. The points are simulated with modtran; the lines correspond to Eq. (19a) with the coefficients of Table 2 for the rural aerosol mixture.

Fig. 5
Fig. 5

Drift in the calibration constants (arbitrary units) derived from 30 Langley plots for two of the MFRSR channels. The least-squares linear fits represent the linear calibration values that were used for most of the experimental analysis (see Table 3).

Fig. 6
Fig. 6

Top graph, difference between the monochromatic AOD’s derived from pyrheliometric data (Δa) and MFRSR data (δ a ). Bottom graph, difference between the monochromatic AOD’s derived from the SolData and the MFRSR instruments. Afternoon data, 10-min time interval, February–May, 1997. The MFRSR AOD’s are calculated with the linear calibration constants (see text).

Fig. 7
Fig. 7

Comparison between (i) the panchromatic AOD’s estimated from pyrheliometric data and (ii) the AOD’s retrieved from MFRSR data at the key wavelength of ∼0.7 μm, as estimated from Eq. (19b). Instantaneous data selected every 30 min in stable weather conditions covering a 9-month period (see Table 3, row 14).

Fig. 8
Fig. 8

Comparison between (i) the panchromatic direct irradiance estimated from monochromatic AOD’s retrieved from MFRSR data at ∼0.7 μm, as estimated from Eq. (19a) and (ii) the direct irradiance measured with an Eppley pyrheliometer. Same data as in Fig. 7.

Tables (3)

Tables Icon

Table 1 Coefficients of Eqs. (7) and (13) for Several Single-Mode and Multimodal Log-Normal Aerosol Modelsa

Tables Icon

Table 2 Coefficients of Eq. (19) for a Selection of the Aerosol Models Presented in Table 1

Tables Icon

Table 3 Comparisons between the AOD at ∼0.7 μm Estimated from Panchromatic and Spectral (MFRSR) Data over a 9-Month Period

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

I λ = I 0 λ   exp - m R δ CDA λ - m w δ w λ - m a δ a λ ,
I = I 0   exp - m R Δ CDA - m R Δ w - m R Δ a ,
exp - m R Δ CDA + Δ w + Δ a = 0   I 0 λ   exp - m R δ CDA λ + δ w λ + δ a λ d λ 0   I 0 λ d λ = I I 0 .
exp - m R Δ CDA + Δ w = 0   I 0 λ   exp - m R δ CDA λ + δ w λ d λ 0   I 0 λ d λ ,
exp - m R Δ a = 0   I 0 λ   exp - m R δ CDA λ + δ w λ + δ a λ d λ 0   I 0 λ   exp - m R δ CDA λ + δ w λ d λ = I I 0   exp - m R Δ CDA + Δ w ,
n r = N / r = Nf r ,
n r = Cr - ν + 1 ,
f r = 1 2 π ln   σ 1 r exp - 1 2 ln r / r n ln   σ 2 ,
γ a λ ,   z = π N z 0   r 2 Q ext x ,   m f r ,   z d r ,
δ a λ = 0   γ a λ ,   z d z = π N col 0   r 2 Q ext x ,   m ¯ f ¯ r d r ,
δ a λ = π C λ 2 π - ν + 2 2 π r 1 / λ 2 π r 2 / λ   x - ν + 1 Q ext x ,   m ¯ d x .
δ a λ = β λ - α ,
δ a λ = π r n 2 N col 2 π ln   σ   x n - 2 × exp - 1 2 ln   x n ln   σ 2 0   xQ ext × exp - 1 2 ln   x ln   σ 2 + ln   x   ln   x n ln 2   σ d x ,
δ a λ = u + y λ / λ 1 λ / λ 1 s + t ,
δ a λ = A δ ˆ a λ ,
exp - m R A δ ˆ a λ * 0   I λ a = 0 d λ = 0   I λ a = 0 exp - m R A δ ˆ a λ d λ ,
1 δ ˆ a λ * = 1 δ ˆ a + m R A 2 δ ˆ a 2 δ ˆ a 2 - 1 ,
δ ˆ a k = 0   I λ a = 0 δ ˆ a k d λ 0   I λ a = 0 d λ ,
δ ¯ a = 0   I 0 λ δ a λ d λ 0   I 0 λ d λ ,
Δ CDA = - 0.101 + 0.235 m R - 0.16 ,
Δ w = 0.112 m R - 0.55 w 0.34 ,
λ * = λ 0 + B + C δ a 0.7 μ m m R ,
λ * = λ 0 + B + C Δ a m R ,
d δ a λ δ a λ d λ λ y y + u λ - 1 - s 1 + t λ - s ,
d Δ a d Δ w + 1 m R d I I 0.037 m R - 0.55 w - 0.66 d w + 1 m R d I I ,

Metrics