Abstract

The thermo-optic constants of AgGaSe2 have been measured at 2.052, 3.3913, 5.2955, and 10.5910 μm. These results combined with values reported in the literature were used to construct the thermo-optic dispersion formula that correctly reproduces the temperature-dependent phase-matching conditions for second-harmonic generation and sum-frequency generation of a CO2 laser as well as the thermally induced lensing effects for the 2.05-μm pumped parametric oscillators.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A Harasaki, J Sakuma, T Itoh, T Satoh, M Sugii, T Sakuma, K Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA-CO2 MOPA system by using AgGaSe2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3. We recently generated an average output power of 3.9 W for SHG and 2.2 W for third-harmonic generation at a fundamental pump power of 22 W (360 mJ/pulse at 60 Hz).
  2. P. A. Budni, M. G. Knights, E. P. Chicklis, K. L. Schepler, “Kilohertz AgGaSe2 optical parametric oscillator pumped at 2 μm,” Opt. Lett. 18, 1068–1079 (1993).
    [CrossRef] [PubMed]
  3. C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico, G. C. Catella, “Thermal lensing in silver gallium selenide parametric oscillator crystals,” Appl. Opt. 33, 3192–3197 (1994).
    [CrossRef] [PubMed]
  4. N. P. Barnes, R. C. Eckardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
    [CrossRef]
  5. N. P. Barnes, D. J. Gettemy, J. R. Hietanen, R. A. Iannini, “Parametric oscillation in AgGaSe2,” Appl. Opt. 28, 5162–5168 (1989).
    [CrossRef] [PubMed]
  6. G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second harmonic generation in AgGaSe2 crystals,” J. Appl. Phys. 74, 5282–5284 (1993).
    [CrossRef]
  7. G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2 temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
    [CrossRef]
  8. K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
    [CrossRef]
  9. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
    [CrossRef]
  10. K. Kato, at H. Komine, J. M. Fukumoto, W. H. Long, E. A. Stappert, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE Select. Topics Quantum Electron. 1, 44–49 (1995).
    [CrossRef]
  11. A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage in AgGaSe2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
    [CrossRef]
  12. N. P. Barnes, J. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B 12, 124–131 (1995).
    [CrossRef]
  13. J. D. Beasley, “Thermal conductivities of some novel nonlinear optical materials,” Appl. Opt. 33, 1000–1003 (1994).
    [CrossRef] [PubMed]
  14. A. S. Borshchevskii, N. A. Goryunova, F. P. Kesamanly, D. N. Nasledov, “Semiconducting AIIBIVC2V compounds,” Phys. Status Solidi 21, 9–55 (1967).
    [CrossRef]
  15. S. C. Abrahams, F. S. L. Hsu, “Debye temperature and cohesive properties,” J. Chem. Phys. 63, 1162–1165 (1975).
    [CrossRef]
  16. G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
    [PubMed]
  17. D. Eimerl, J. Marion, E. K. Graham, H. A. McKinstry, S. Haussuhl, “Elastic constants and thermal fracture of AgGaSe2 and d-LAP,” IEEE J. Quantum Electron. 27, 142–145 (1991).
    [CrossRef]

1997

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage in AgGaSe2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

1995

K. Kato, at H. Komine, J. M. Fukumoto, W. H. Long, E. A. Stappert, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE Select. Topics Quantum Electron. 1, 44–49 (1995).
[CrossRef]

N. P. Barnes, J. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B 12, 124–131 (1995).
[CrossRef]

1994

J. D. Beasley, “Thermal conductivities of some novel nonlinear optical materials,” Appl. Opt. 33, 1000–1003 (1994).
[CrossRef] [PubMed]

C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico, G. C. Catella, “Thermal lensing in silver gallium selenide parametric oscillator crystals,” Appl. Opt. 33, 3192–3197 (1994).
[CrossRef] [PubMed]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2 temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[CrossRef]

1993

1992

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
[CrossRef]

1991

D. Eimerl, J. Marion, E. K. Graham, H. A. McKinstry, S. Haussuhl, “Elastic constants and thermal fracture of AgGaSe2 and d-LAP,” IEEE J. Quantum Electron. 27, 142–145 (1991).
[CrossRef]

1989

1979

N. P. Barnes, R. C. Eckardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

1975

S. C. Abrahams, F. S. L. Hsu, “Debye temperature and cohesive properties,” J. Chem. Phys. 63, 1162–1165 (1975).
[CrossRef]

1967

A. S. Borshchevskii, N. A. Goryunova, F. P. Kesamanly, D. N. Nasledov, “Semiconducting AIIBIVC2V compounds,” Phys. Status Solidi 21, 9–55 (1967).
[CrossRef]

Abrahams, S. C.

S. C. Abrahams, F. S. L. Hsu, “Debye temperature and cohesive properties,” J. Chem. Phys. 63, 1162–1165 (1975).
[CrossRef]

Barnes, N. P.

N. P. Barnes, J. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B 12, 124–131 (1995).
[CrossRef]

N. P. Barnes, D. J. Gettemy, J. R. Hietanen, R. A. Iannini, “Parametric oscillation in AgGaSe2,” Appl. Opt. 28, 5162–5168 (1989).
[CrossRef] [PubMed]

N. P. Barnes, R. C. Eckardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

Beasley, J. D.

Bhar, G. C.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2 temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second harmonic generation in AgGaSe2 crystals,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

Borshchevskii, A. S.

A. S. Borshchevskii, N. A. Goryunova, F. P. Kesamanly, D. N. Nasledov, “Semiconducting AIIBIVC2V compounds,” Phys. Status Solidi 21, 9–55 (1967).
[CrossRef]

Budni, P. A.

Catella, G. C.

Chatterjee, U.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2 temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second harmonic generation in AgGaSe2 crystals,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

Chicklis, E. P.

Cooper, D. G.

Das, S.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2 temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second harmonic generation in AgGaSe2 crystals,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

DeDomenico, R.

Eckardt, R. C.

G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
[PubMed]

N. P. Barnes, R. C. Eckardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

Edgett, L. B.

N. P. Barnes, R. C. Eckardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

Eimerl, D.

D. Eimerl, J. Marion, E. K. Graham, H. A. McKinstry, S. Haussuhl, “Elastic constants and thermal fracture of AgGaSe2 and d-LAP,” IEEE J. Quantum Electron. 27, 142–145 (1991).
[CrossRef]

Feigelson, R. S.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2 temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
[PubMed]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second harmonic generation in AgGaSe2 crystals,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

Fukumoto, J. M.

K. Kato, at H. Komine, J. M. Fukumoto, W. H. Long, E. A. Stappert, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE Select. Topics Quantum Electron. 1, 44–49 (1995).
[CrossRef]

Gettemy, D. J.

N. P. Barnes, D. J. Gettemy, J. R. Hietanen, R. A. Iannini, “Parametric oscillation in AgGaSe2,” Appl. Opt. 28, 5162–5168 (1989).
[CrossRef] [PubMed]

N. P. Barnes, R. C. Eckardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

Goryunova, N. A.

A. S. Borshchevskii, N. A. Goryunova, F. P. Kesamanly, D. N. Nasledov, “Semiconducting AIIBIVC2V compounds,” Phys. Status Solidi 21, 9–55 (1967).
[CrossRef]

Graham, E. K.

D. Eimerl, J. Marion, E. K. Graham, H. A. McKinstry, S. Haussuhl, “Elastic constants and thermal fracture of AgGaSe2 and d-LAP,” IEEE J. Quantum Electron. 27, 142–145 (1991).
[CrossRef]

Harasaki, A

A Harasaki, J Sakuma, T Itoh, T Satoh, M Sugii, T Sakuma, K Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA-CO2 MOPA system by using AgGaSe2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3. We recently generated an average output power of 3.9 W for SHG and 2.2 W for third-harmonic generation at a fundamental pump power of 22 W (360 mJ/pulse at 60 Hz).

Harasaki, A.

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage in AgGaSe2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

Haussuhl, S.

D. Eimerl, J. Marion, E. K. Graham, H. A. McKinstry, S. Haussuhl, “Elastic constants and thermal fracture of AgGaSe2 and d-LAP,” IEEE J. Quantum Electron. 27, 142–145 (1991).
[CrossRef]

Hietanen, J. R.

Hsu, F. S. L.

S. C. Abrahams, F. S. L. Hsu, “Debye temperature and cohesive properties,” J. Chem. Phys. 63, 1162–1165 (1975).
[CrossRef]

Iannini, R. A.

Itoh, T

A Harasaki, J Sakuma, T Itoh, T Satoh, M Sugii, T Sakuma, K Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA-CO2 MOPA system by using AgGaSe2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3. We recently generated an average output power of 3.9 W for SHG and 2.2 W for third-harmonic generation at a fundamental pump power of 22 W (360 mJ/pulse at 60 Hz).

Kato, K

A Harasaki, J Sakuma, T Itoh, T Satoh, M Sugii, T Sakuma, K Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA-CO2 MOPA system by using AgGaSe2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3. We recently generated an average output power of 3.9 W for SHG and 2.2 W for third-harmonic generation at a fundamental pump power of 22 W (360 mJ/pulse at 60 Hz).

Kato, K.

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage in AgGaSe2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

K. Kato, at H. Komine, J. M. Fukumoto, W. H. Long, E. A. Stappert, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE Select. Topics Quantum Electron. 1, 44–49 (1995).
[CrossRef]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[CrossRef]

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
[CrossRef]

Kesamanly, F. P.

A. S. Borshchevskii, N. A. Goryunova, F. P. Kesamanly, D. N. Nasledov, “Semiconducting AIIBIVC2V compounds,” Phys. Status Solidi 21, 9–55 (1967).
[CrossRef]

Knights, M. G.

Komine, at H.

K. Kato, at H. Komine, J. M. Fukumoto, W. H. Long, E. A. Stappert, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE Select. Topics Quantum Electron. 1, 44–49 (1995).
[CrossRef]

Long, W. H.

K. Kato, at H. Komine, J. M. Fukumoto, W. H. Long, E. A. Stappert, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE Select. Topics Quantum Electron. 1, 44–49 (1995).
[CrossRef]

Marion, J.

D. Eimerl, J. Marion, E. K. Graham, H. A. McKinstry, S. Haussuhl, “Elastic constants and thermal fracture of AgGaSe2 and d-LAP,” IEEE J. Quantum Electron. 27, 142–145 (1991).
[CrossRef]

Marquardt, C. L.

McKinstry, H. A.

D. Eimerl, J. Marion, E. K. Graham, H. A. McKinstry, S. Haussuhl, “Elastic constants and thermal fracture of AgGaSe2 and d-LAP,” IEEE J. Quantum Electron. 27, 142–145 (1991).
[CrossRef]

Nasledov, D. N.

A. S. Borshchevskii, N. A. Goryunova, F. P. Kesamanly, D. N. Nasledov, “Semiconducting AIIBIVC2V compounds,” Phys. Status Solidi 21, 9–55 (1967).
[CrossRef]

Route, R. K.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2 temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
[PubMed]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second harmonic generation in AgGaSe2 crystals,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

Rudra, A. M.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2 temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second harmonic generation in AgGaSe2 crystals,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

Sakuma, J

A Harasaki, J Sakuma, T Itoh, T Satoh, M Sugii, T Sakuma, K Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA-CO2 MOPA system by using AgGaSe2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3. We recently generated an average output power of 3.9 W for SHG and 2.2 W for third-harmonic generation at a fundamental pump power of 22 W (360 mJ/pulse at 60 Hz).

Sakuma, T

A Harasaki, J Sakuma, T Itoh, T Satoh, M Sugii, T Sakuma, K Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA-CO2 MOPA system by using AgGaSe2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3. We recently generated an average output power of 3.9 W for SHG and 2.2 W for third-harmonic generation at a fundamental pump power of 22 W (360 mJ/pulse at 60 Hz).

Satoh, T

A Harasaki, J Sakuma, T Itoh, T Satoh, M Sugii, T Sakuma, K Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA-CO2 MOPA system by using AgGaSe2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3. We recently generated an average output power of 3.9 W for SHG and 2.2 W for third-harmonic generation at a fundamental pump power of 22 W (360 mJ/pulse at 60 Hz).

Schepler, K. L.

Shiozawa, L. R.

Stappert, E. A.

K. Kato, at H. Komine, J. M. Fukumoto, W. H. Long, E. A. Stappert, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE Select. Topics Quantum Electron. 1, 44–49 (1995).
[CrossRef]

Sugii, M

A Harasaki, J Sakuma, T Itoh, T Satoh, M Sugii, T Sakuma, K Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA-CO2 MOPA system by using AgGaSe2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3. We recently generated an average output power of 3.9 W for SHG and 2.2 W for third-harmonic generation at a fundamental pump power of 22 W (360 mJ/pulse at 60 Hz).

Williams-Byrd, J.

Appl. Opt.

IEEE J. Quantum Electron.

D. Eimerl, J. Marion, E. K. Graham, H. A. McKinstry, S. Haussuhl, “Elastic constants and thermal fracture of AgGaSe2 and d-LAP,” IEEE J. Quantum Electron. 27, 142–145 (1991).
[CrossRef]

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992).
[CrossRef]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[CrossRef]

N. P. Barnes, R. C. Eckardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979).
[CrossRef]

IEEE Select. Topics Quantum Electron.

K. Kato, at H. Komine, J. M. Fukumoto, W. H. Long, E. A. Stappert, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE Select. Topics Quantum Electron. 1, 44–49 (1995).
[CrossRef]

J. Appl. Phys.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second harmonic generation in AgGaSe2 crystals,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

J. Chem. Phys.

S. C. Abrahams, F. S. L. Hsu, “Debye temperature and cohesive properties,” J. Chem. Phys. 63, 1162–1165 (1975).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2 temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

Jpn. J. Appl. Phys.

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage in AgGaSe2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

Opt. Lett.

Phys. Status Solidi

A. S. Borshchevskii, N. A. Goryunova, F. P. Kesamanly, D. N. Nasledov, “Semiconducting AIIBIVC2V compounds,” Phys. Status Solidi 21, 9–55 (1967).
[CrossRef]

Other

A Harasaki, J Sakuma, T Itoh, T Satoh, M Sugii, T Sakuma, K Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA-CO2 MOPA system by using AgGaSe2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3. We recently generated an average output power of 3.9 W for SHG and 2.2 W for third-harmonic generation at a fundamental pump power of 22 W (360 mJ/pulse at 60 Hz).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Thermo-optic constants of AgGaSe2 at room temperature: △, ▲, experimental points from Ref. 5; □, ■, experimental points from Refs. 6 and 7; ○, ●, our experimental points.

Fig. 2
Fig. 2

Temperature variation of the phase-matching wavelength for SHG of a CO2 laser at 9.5039–9.6039 μm in AgGaSe2. The crystal is oriented at θ = 49.8°. The dashed line was calculated with Sellmeier equations and the thermo-optic dispersion formula presented in the text: ●, experimental points from Ref. 6; ○, our experimental points.

Fig. 3
Fig. 3

Temperature variation of the phase-matching angle for SHG of a CO2 laser at 9.2824, 9.5039, and 9.6039 μm in AgGaSe2. The dashed lines were calculated with Sellmeier equations and the thermo-optic dispersion formula presented in the text: ●, experimental points from Ref. 7; ○, our experimental points. The solid lines are from Ref. 7 and were inserted only for comparison.

Tables (1)

Tables Icon

Table 1 Temperature Phase-Matching Bandwidths (FWHM) for SHG and SFG of the CO2 Laser Frequency at 10.5910 μm in AgGaSe2

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n o 2 = 6.8507 + 0.4297 λ 2 - 0.1584 - 0.00125 λ 2 , n e 2 = 6.6792 + 0.4597 λ 2 - 0.2122 - 0.00126 λ 2 ,
d n o / d T = 0.046 λ + 7.514 × 10 - 5 ° C - 1 , d n e / d T = 0.061 λ + 7.984 × 10 - 5 ,
f = π ω o 2 K s α lP d n / d T ln 2 ,
K s = 9.8 × 10 - 2 T - 1 / 2 exp θ / T W / cm   K ,

Metrics