Abstract

The literature describes more than 30 measurements, at wavelengths between 249 and 1550 nm, of the absolute value of the nonlinear refractive-index coefficient of fused silica. Results of these experiments were assessed and best currently available values were selected for the wavelengths of 351, 527, and 1053 nm. The best values are (3.6 ± 0.64) × 10-16 cm2/W at 351 nm, (3.0 ± 0.35) × 10-16 cm2/W at 527 nm, and (2.74 ± 0.17) × 10-16 cm2/W at 1053 nm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Bespalov, V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–312 (1966).
  2. PROP2 is the most recent of a series of beam propagation codes that were developed at Livermore National Laboratory. Predecessor codes are reviewed in W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation in large systems,” IEEE J. Quantum Electron. QE-17, 1727–1743 (1981). Liberal use was also made of the code OASIS that was originally developed by Rockwell Rocketdyne, Inc. under contract with the U.S. Air Force.
  3. J. A. Paisner, E. M. Campbell, W. J. Hogan, “The National Ignition Facility Project,” UCRL-JC-117379 Rev. 1 (Lawrence Livermore National Laboratory, Livermore, Calif., 1994).
  4. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Shiek-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [CrossRef]
  5. A. J. Taylor, G Rodriguez, T. S. Clement, “Measurement of n2 for KDP and fused silica at 800 nm and 400 nm,” Attachment 1 in Effort in Support of Core Science and Technology Plan for Indirect-Drive Inertial Confinement (ICF) Fusion, LA-UR-96-2689 (Los Alamos National Laboratory, Livermore, Calif., 1996).
  6. T. Shimada, N. A. Kurnit, M. Shiek-Bahae, “Measurements of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1995).
  7. K. S. Kim, R. H. Stolen, W. A. Reed, K. W. Quoi, “Measurement of the nonlinear index of silica-core and dispersion-shifted fibers,” Opt. Lett. 19, 257–259 (1994).
    [CrossRef] [PubMed]
  8. R. Adair, L. L. Chase, S. A. Payne, “Dispersion of the nonlinear refractive index of optical materials,” Opt. Mat. 1, 185–194 (1992).
    [CrossRef]
  9. I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Correy, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
    [CrossRef]
  10. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, M. Nishimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light,” Opt. Lett. 20, 988–990 (1995).
    [CrossRef] [PubMed]
  11. Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
    [CrossRef]
  12. M. A. Vasileva, Yu. Vischakas, V. Gulbinas, “Measurements of the nonlinear refractive index of laser active media doped with Nd3+,” Sov. J. Quantum Electron. 15, 656–659 (1985).
    [CrossRef]
  13. W. T. White, W. L. Smith, D. Milam, “Direct measurement of the nonlinear refractive index coefficient γ at 355 nm in fused silica and in Bk-10 glass,” Opt. Lett. 9, 10–12 (1984).
    [CrossRef]
  14. W. E. Williams, M. J. Soileau, E. W. Van Stryland, “Simple direct measurements of n2,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, D. Milam, B. E. Newman, eds., Natl. Bur. Stand. (U.S.) Spec. Publ. 688 (U.S. GAO, Washington, D.C., 1985), pp. 522–531.
  15. R. H. Stolen, C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
    [CrossRef]
  16. G. B. Altshuler, A. I. Barbashev, V. B. Karasev, K. I. Krylov, V. M. Ovchinnkov, S. F. Sharlai, “Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials,” Sov. Tech. Phys. Lett. 3, 213–215 (1977).
  17. D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
    [CrossRef]
  18. W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive index measurements with picosecond pulses,” Phys. Rev. B 12, 706–714 (1975).
    [CrossRef]
  19. R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass optical waveguides,” Appl. Phys. Lett. 22, 294–297 (1973).
    [CrossRef]
  20. A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
    [CrossRef]
  21. A. P. Veduta, B. P. Kirsanov, “Variation of the refractive index of liquids and glasses in a high intensity field of a ruby laser,” Sov. Phys. JETP 27, 736–738 (1968).
  22. M. D. Perry, Lawrence Livermore Laboratory, Livermore, Calif. (personal communication). Measurements of intensity-dependent frequency broadening, one in a thin window of silica and one in a silica fiber.
  23. L. L. Chase, E. W. Van Stryland, “Nonlinear refractive index-inorganic materials,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), Section 8.1.1.
  24. A. N. Azarenkov, G. B. Altshuler, N. R. Belashenkov, S. A. Kozlov, “Fast nonlinearity of the refractive index of a solid-state dielectric active media,” Sov. J. Quantum Electron. 23, 633–655 (1993).
    [CrossRef]
  25. W. L. Smith, “Nonlinear refractive index,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (Chemical Rubber Co., Boca Raton, Fla., 1986), Vol. 3, Part 1, Section 1.3.
  26. M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic refraction in solids,” J. Quantum. Electron. 27, 1296–1309 (1991).
    [CrossRef]

1996 (1)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Shiek-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

A. N. Azarenkov, G. B. Altshuler, N. R. Belashenkov, S. A. Kozlov, “Fast nonlinearity of the refractive index of a solid-state dielectric active media,” Sov. J. Quantum Electron. 23, 633–655 (1993).
[CrossRef]

1992 (1)

R. Adair, L. L. Chase, S. A. Payne, “Dispersion of the nonlinear refractive index of optical materials,” Opt. Mat. 1, 185–194 (1992).
[CrossRef]

1991 (1)

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic refraction in solids,” J. Quantum. Electron. 27, 1296–1309 (1991).
[CrossRef]

1990 (1)

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Correy, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

1989 (1)

Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
[CrossRef]

1985 (1)

M. A. Vasileva, Yu. Vischakas, V. Gulbinas, “Measurements of the nonlinear refractive index of laser active media doped with Nd3+,” Sov. J. Quantum Electron. 15, 656–659 (1985).
[CrossRef]

1984 (1)

1981 (1)

PROP2 is the most recent of a series of beam propagation codes that were developed at Livermore National Laboratory. Predecessor codes are reviewed in W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation in large systems,” IEEE J. Quantum Electron. QE-17, 1727–1743 (1981). Liberal use was also made of the code OASIS that was originally developed by Rockwell Rocketdyne, Inc. under contract with the U.S. Air Force.

1978 (1)

R. H. Stolen, C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

1977 (1)

G. B. Altshuler, A. I. Barbashev, V. B. Karasev, K. I. Krylov, V. M. Ovchinnkov, S. F. Sharlai, “Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials,” Sov. Tech. Phys. Lett. 3, 213–215 (1977).

1976 (1)

D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[CrossRef]

1975 (1)

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive index measurements with picosecond pulses,” Phys. Rev. B 12, 706–714 (1975).
[CrossRef]

1973 (1)

R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass optical waveguides,” Appl. Phys. Lett. 22, 294–297 (1973).
[CrossRef]

1972 (1)

A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
[CrossRef]

1968 (1)

A. P. Veduta, B. P. Kirsanov, “Variation of the refractive index of liquids and glasses in a high intensity field of a ruby laser,” Sov. Phys. JETP 27, 736–738 (1968).

1966 (1)

V. I. Bespalov, V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–312 (1966).

Adair, R.

R. Adair, L. L. Chase, S. A. Payne, “Dispersion of the nonlinear refractive index of optical materials,” Opt. Mat. 1, 185–194 (1992).
[CrossRef]

Altshuler, G. B.

A. N. Azarenkov, G. B. Altshuler, N. R. Belashenkov, S. A. Kozlov, “Fast nonlinearity of the refractive index of a solid-state dielectric active media,” Sov. J. Quantum Electron. 23, 633–655 (1993).
[CrossRef]

G. B. Altshuler, A. I. Barbashev, V. B. Karasev, K. I. Krylov, V. M. Ovchinnkov, S. F. Sharlai, “Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials,” Sov. Tech. Phys. Lett. 3, 213–215 (1977).

Ashkin, A.

R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass optical waveguides,” Appl. Phys. Lett. 22, 294–297 (1973).
[CrossRef]

Azarenkov, A. N.

A. N. Azarenkov, G. B. Altshuler, N. R. Belashenkov, S. A. Kozlov, “Fast nonlinearity of the refractive index of a solid-state dielectric active media,” Sov. J. Quantum Electron. 23, 633–655 (1993).
[CrossRef]

Barbashev, A. I.

G. B. Altshuler, A. I. Barbashev, V. B. Karasev, K. I. Krylov, V. M. Ovchinnkov, S. F. Sharlai, “Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials,” Sov. Tech. Phys. Lett. 3, 213–215 (1977).

Barr, J. R. M.

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Correy, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

Bechtel, J. H.

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive index measurements with picosecond pulses,” Phys. Rev. B 12, 706–714 (1975).
[CrossRef]

Belashenkov, N. R.

A. N. Azarenkov, G. B. Altshuler, N. R. Belashenkov, S. A. Kozlov, “Fast nonlinearity of the refractive index of a solid-state dielectric active media,” Sov. J. Quantum Electron. 23, 633–655 (1993).
[CrossRef]

Bespalov, V. I.

V. I. Bespalov, V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–312 (1966).

Bloembergen, N.

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive index measurements with picosecond pulses,” Phys. Rev. B 12, 706–714 (1975).
[CrossRef]

Campbell, E. M.

J. A. Paisner, E. M. Campbell, W. J. Hogan, “The National Ignition Facility Project,” UCRL-JC-117379 Rev. 1 (Lawrence Livermore National Laboratory, Livermore, Calif., 1994).

Chase, L. L.

R. Adair, L. L. Chase, S. A. Payne, “Dispersion of the nonlinear refractive index of optical materials,” Opt. Mat. 1, 185–194 (1992).
[CrossRef]

L. L. Chase, E. W. Van Stryland, “Nonlinear refractive index-inorganic materials,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), Section 8.1.1.

Clement, T. S.

A. J. Taylor, G Rodriguez, T. S. Clement, “Measurement of n2 for KDP and fused silica at 800 nm and 400 nm,” Attachment 1 in Effort in Support of Core Science and Technology Plan for Indirect-Drive Inertial Confinement (ICF) Fusion, LA-UR-96-2689 (Los Alamos National Laboratory, Livermore, Calif., 1996).

Correy, I.

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Correy, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Shiek-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

George, N.

A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
[CrossRef]

Gulbinas, V.

M. A. Vasileva, Yu. Vischakas, V. Gulbinas, “Measurements of the nonlinear refractive index of laser active media doped with Nd3+,” Sov. J. Quantum Electron. 15, 656–659 (1985).
[CrossRef]

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Shiek-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic refraction in solids,” J. Quantum. Electron. 27, 1296–1309 (1991).
[CrossRef]

Hellwarth, R. W.

A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
[CrossRef]

Hogan, W. J.

J. A. Paisner, E. M. Campbell, W. J. Hogan, “The National Ignition Facility Project,” UCRL-JC-117379 Rev. 1 (Lawrence Livermore National Laboratory, Livermore, Calif., 1994).

Hooker, C. J.

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Correy, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

Hunt, J. T.

PROP2 is the most recent of a series of beam propagation codes that were developed at Livermore National Laboratory. Predecessor codes are reviewed in W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation in large systems,” IEEE J. Quantum Electron. QE-17, 1727–1743 (1981). Liberal use was also made of the code OASIS that was originally developed by Rockwell Rocketdyne, Inc. under contract with the U.S. Air Force.

Hutchings, D. C.

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic refraction in solids,” J. Quantum. Electron. 27, 1296–1309 (1991).
[CrossRef]

Hutchinson, M. H. R.

Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
[CrossRef]

Karasev, V. B.

G. B. Altshuler, A. I. Barbashev, V. B. Karasev, K. I. Krylov, V. M. Ovchinnkov, S. F. Sharlai, “Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials,” Sov. Tech. Phys. Lett. 3, 213–215 (1977).

Kato, T.

Kim, K. S.

Kim, Y. P.

Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
[CrossRef]

Kirsanov, B. P.

A. P. Veduta, B. P. Kirsanov, “Variation of the refractive index of liquids and glasses in a high intensity field of a ruby laser,” Sov. Phys. JETP 27, 736–738 (1968).

Kozlov, S. A.

A. N. Azarenkov, G. B. Altshuler, N. R. Belashenkov, S. A. Kozlov, “Fast nonlinearity of the refractive index of a solid-state dielectric active media,” Sov. J. Quantum Electron. 23, 633–655 (1993).
[CrossRef]

Krylov, K. I.

G. B. Altshuler, A. I. Barbashev, V. B. Karasev, K. I. Krylov, V. M. Ovchinnkov, S. F. Sharlai, “Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials,” Sov. Tech. Phys. Lett. 3, 213–215 (1977).

Kurnit, N. A.

T. Shimada, N. A. Kurnit, M. Shiek-Bahae, “Measurements of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1995).

Lin, C.

R. H. Stolen, C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Milam, D.

W. T. White, W. L. Smith, D. Milam, “Direct measurement of the nonlinear refractive index coefficient γ at 355 nm in fused silica and in Bk-10 glass,” Opt. Lett. 9, 10–12 (1984).
[CrossRef]

D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[CrossRef]

Nishimura, M.

Ovchinnkov, V. M.

G. B. Altshuler, A. I. Barbashev, V. B. Karasev, K. I. Krylov, V. M. Ovchinnkov, S. F. Sharlai, “Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials,” Sov. Tech. Phys. Lett. 3, 213–215 (1977).

Owyoung, A.

A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
[CrossRef]

Paisner, J. A.

J. A. Paisner, E. M. Campbell, W. J. Hogan, “The National Ignition Facility Project,” UCRL-JC-117379 Rev. 1 (Lawrence Livermore National Laboratory, Livermore, Calif., 1994).

Payne, S. A.

R. Adair, L. L. Chase, S. A. Payne, “Dispersion of the nonlinear refractive index of optical materials,” Opt. Mat. 1, 185–194 (1992).
[CrossRef]

Perry, M. D.

M. D. Perry, Lawrence Livermore Laboratory, Livermore, Calif. (personal communication). Measurements of intensity-dependent frequency broadening, one in a thin window of silica and one in a silica fiber.

Quoi, K. W.

Reed, W. A.

Rodriguez, G

A. J. Taylor, G Rodriguez, T. S. Clement, “Measurement of n2 for KDP and fused silica at 800 nm and 400 nm,” Attachment 1 in Effort in Support of Core Science and Technology Plan for Indirect-Drive Inertial Confinement (ICF) Fusion, LA-UR-96-2689 (Los Alamos National Laboratory, Livermore, Calif., 1996).

Ross, I. N.

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Correy, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Shiek-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Sasaoka, E.

Sharlai, S. F.

G. B. Altshuler, A. I. Barbashev, V. B. Karasev, K. I. Krylov, V. M. Ovchinnkov, S. F. Sharlai, “Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials,” Sov. Tech. Phys. Lett. 3, 213–215 (1977).

Shiek-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Shiek-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic refraction in solids,” J. Quantum. Electron. 27, 1296–1309 (1991).
[CrossRef]

T. Shimada, N. A. Kurnit, M. Shiek-Bahae, “Measurements of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1995).

Shimada, T.

T. Shimada, N. A. Kurnit, M. Shiek-Bahae, “Measurements of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1995).

Simmons, W. W.

PROP2 is the most recent of a series of beam propagation codes that were developed at Livermore National Laboratory. Predecessor codes are reviewed in W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation in large systems,” IEEE J. Quantum Electron. QE-17, 1727–1743 (1981). Liberal use was also made of the code OASIS that was originally developed by Rockwell Rocketdyne, Inc. under contract with the U.S. Air Force.

Smith, W. L.

W. T. White, W. L. Smith, D. Milam, “Direct measurement of the nonlinear refractive index coefficient γ at 355 nm in fused silica and in Bk-10 glass,” Opt. Lett. 9, 10–12 (1984).
[CrossRef]

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive index measurements with picosecond pulses,” Phys. Rev. B 12, 706–714 (1975).
[CrossRef]

W. L. Smith, “Nonlinear refractive index,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (Chemical Rubber Co., Boca Raton, Fla., 1986), Vol. 3, Part 1, Section 1.3.

Soileau, M. J.

W. E. Williams, M. J. Soileau, E. W. Van Stryland, “Simple direct measurements of n2,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, D. Milam, B. E. Newman, eds., Natl. Bur. Stand. (U.S.) Spec. Publ. 688 (U.S. GAO, Washington, D.C., 1985), pp. 522–531.

Stolen, R. H.

K. S. Kim, R. H. Stolen, W. A. Reed, K. W. Quoi, “Measurement of the nonlinear index of silica-core and dispersion-shifted fibers,” Opt. Lett. 19, 257–259 (1994).
[CrossRef] [PubMed]

R. H. Stolen, C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass optical waveguides,” Appl. Phys. Lett. 22, 294–297 (1973).
[CrossRef]

Suetsugu, Y.

Takagi, M.

Talanov, V. I.

V. I. Bespalov, V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–312 (1966).

Taylor, A. J.

A. J. Taylor, G Rodriguez, T. S. Clement, “Measurement of n2 for KDP and fused silica at 800 nm and 400 nm,” Attachment 1 in Effort in Support of Core Science and Technology Plan for Indirect-Drive Inertial Confinement (ICF) Fusion, LA-UR-96-2689 (Los Alamos National Laboratory, Livermore, Calif., 1996).

Toner, W. T.

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Correy, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Shiek-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic refraction in solids,” J. Quantum. Electron. 27, 1296–1309 (1991).
[CrossRef]

L. L. Chase, E. W. Van Stryland, “Nonlinear refractive index-inorganic materials,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), Section 8.1.1.

W. E. Williams, M. J. Soileau, E. W. Van Stryland, “Simple direct measurements of n2,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, D. Milam, B. E. Newman, eds., Natl. Bur. Stand. (U.S.) Spec. Publ. 688 (U.S. GAO, Washington, D.C., 1985), pp. 522–531.

Vasileva, M. A.

M. A. Vasileva, Yu. Vischakas, V. Gulbinas, “Measurements of the nonlinear refractive index of laser active media doped with Nd3+,” Sov. J. Quantum Electron. 15, 656–659 (1985).
[CrossRef]

Veduta, A. P.

A. P. Veduta, B. P. Kirsanov, “Variation of the refractive index of liquids and glasses in a high intensity field of a ruby laser,” Sov. Phys. JETP 27, 736–738 (1968).

Vischakas, Yu.

M. A. Vasileva, Yu. Vischakas, V. Gulbinas, “Measurements of the nonlinear refractive index of laser active media doped with Nd3+,” Sov. J. Quantum Electron. 15, 656–659 (1985).
[CrossRef]

Warren, W. E.

PROP2 is the most recent of a series of beam propagation codes that were developed at Livermore National Laboratory. Predecessor codes are reviewed in W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation in large systems,” IEEE J. Quantum Electron. QE-17, 1727–1743 (1981). Liberal use was also made of the code OASIS that was originally developed by Rockwell Rocketdyne, Inc. under contract with the U.S. Air Force.

Weber, M. J.

D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[CrossRef]

White, W. T.

Williams, W. E.

W. E. Williams, M. J. Soileau, E. W. Van Stryland, “Simple direct measurements of n2,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, D. Milam, B. E. Newman, eds., Natl. Bur. Stand. (U.S.) Spec. Publ. 688 (U.S. GAO, Washington, D.C., 1985), pp. 522–531.

Appl. Phys. B (1)

Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass optical waveguides,” Appl. Phys. Lett. 22, 294–297 (1973).
[CrossRef]

IEEE J. Quantum Electron. (2)

PROP2 is the most recent of a series of beam propagation codes that were developed at Livermore National Laboratory. Predecessor codes are reviewed in W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation in large systems,” IEEE J. Quantum Electron. QE-17, 1727–1743 (1981). Liberal use was also made of the code OASIS that was originally developed by Rockwell Rocketdyne, Inc. under contract with the U.S. Air Force.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Shiek-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

J. Appl. Phys. (1)

D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976).
[CrossRef]

J. Mod. Opt. (1)

I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Correy, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
[CrossRef]

J. Quantum. Electron. (1)

M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic refraction in solids,” J. Quantum. Electron. 27, 1296–1309 (1991).
[CrossRef]

JETP Lett. (1)

V. I. Bespalov, V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–312 (1966).

Opt. Lett. (3)

Opt. Mat. (1)

R. Adair, L. L. Chase, S. A. Payne, “Dispersion of the nonlinear refractive index of optical materials,” Opt. Mat. 1, 185–194 (1992).
[CrossRef]

Phys. Rev. A (1)

R. H. Stolen, C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Phys. Rev. B (2)

W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive index measurements with picosecond pulses,” Phys. Rev. B 12, 706–714 (1975).
[CrossRef]

A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972).
[CrossRef]

Sov. J. Quantum Electron. (2)

M. A. Vasileva, Yu. Vischakas, V. Gulbinas, “Measurements of the nonlinear refractive index of laser active media doped with Nd3+,” Sov. J. Quantum Electron. 15, 656–659 (1985).
[CrossRef]

A. N. Azarenkov, G. B. Altshuler, N. R. Belashenkov, S. A. Kozlov, “Fast nonlinearity of the refractive index of a solid-state dielectric active media,” Sov. J. Quantum Electron. 23, 633–655 (1993).
[CrossRef]

Sov. Phys. JETP (1)

A. P. Veduta, B. P. Kirsanov, “Variation of the refractive index of liquids and glasses in a high intensity field of a ruby laser,” Sov. Phys. JETP 27, 736–738 (1968).

Sov. Tech. Phys. Lett. (1)

G. B. Altshuler, A. I. Barbashev, V. B. Karasev, K. I. Krylov, V. M. Ovchinnkov, S. F. Sharlai, “Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials,” Sov. Tech. Phys. Lett. 3, 213–215 (1977).

Other (7)

M. D. Perry, Lawrence Livermore Laboratory, Livermore, Calif. (personal communication). Measurements of intensity-dependent frequency broadening, one in a thin window of silica and one in a silica fiber.

L. L. Chase, E. W. Van Stryland, “Nonlinear refractive index-inorganic materials,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), Section 8.1.1.

W. E. Williams, M. J. Soileau, E. W. Van Stryland, “Simple direct measurements of n2,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, D. Milam, B. E. Newman, eds., Natl. Bur. Stand. (U.S.) Spec. Publ. 688 (U.S. GAO, Washington, D.C., 1985), pp. 522–531.

A. J. Taylor, G Rodriguez, T. S. Clement, “Measurement of n2 for KDP and fused silica at 800 nm and 400 nm,” Attachment 1 in Effort in Support of Core Science and Technology Plan for Indirect-Drive Inertial Confinement (ICF) Fusion, LA-UR-96-2689 (Los Alamos National Laboratory, Livermore, Calif., 1996).

T. Shimada, N. A. Kurnit, M. Shiek-Bahae, “Measurements of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1995).

J. A. Paisner, E. M. Campbell, W. J. Hogan, “The National Ignition Facility Project,” UCRL-JC-117379 Rev. 1 (Lawrence Livermore National Laboratory, Livermore, Calif., 1994).

W. L. Smith, “Nonlinear refractive index,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (Chemical Rubber Co., Boca Raton, Fla., 1986), Vol. 3, Part 1, Section 1.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Measured values of the nonlinear refractive-index coefficient as a function of wavelength. Coefficients are plotted in multiples of 1 × 10-16 cm2/W. To make the error bars legible, some data were plotted at wavelengths slightly removed from the measurement wavelength. The source for each datum is indicated by the attached reference number.

Fig. 2
Fig. 2

Values of γ that remained after the selection process and designated best values at 351 and 527 nm. Coefficients are plotted in multiples of 1 × 10-16 cm2/W. The solid and dashed curves are PERT curves with UV resonances at, respectively, 1.45 × 105 cm-1 and 1.25 × 105 cm-1.

Tables (2)

Tables Icon

Table 1 Measured Values of the Nonlinear Refractive-Index Coefficient γ for Silicaa

Tables Icon

Table 2 Eleven Values of the Nonlinear Refractive-Index Coefficienta

Metrics