Abstract

We constructed a cw Ti:Al2O3 master oscillator–dye preamplifier–Ti:Al2O3 power amplifier system that generates <2-ns, 100-mJ pulses. The system is tunable from 750 to 890 nm and has a repetition rate of 30 Hz. The output pulse has a near Fourier-transform-limited bandwidth of ∼240 MHz. Backward stimulated Brillouin scattering is used to control the growth of amplified spontaneous emission (ASE). The content of ASE in the final output is under our detection limit (<10-4) for the entire tuning range.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Salour, “Powerful dye laser for oscillator–amplifier system for high resolution and coherent pulse spectroscopy,” Opt. Commun. 22, 202–206 (1977).
    [CrossRef]
  2. P. Drell, S. Chu, “A megawatt dye laser oscillator–amplifier system for high resolution spectroscopy,” Opt. Commun. 28, 343–348 (1979).
    [CrossRef]
  3. L. Cabaret, C. Delsart, C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a VUV single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
    [CrossRef]
  4. C. H. Muller, D. D. Lowenthal, M. A. DeFaccio, A. V. Smith, “High-efficiency, energy-scalable, coherent 130-nm source by four-wave mixing in Hg vapor,” Opt. Lett. 13, 651–653 (1988).
    [CrossRef]
  5. E. Cromwell, T. Trickl, Y. T. Lee, A. H. Kung, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
    [CrossRef]
  6. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  7. N. P. Barnes, D. K. Remelius, “Amplifier and line-narrowed oscillator performance of Ti:Al2O3,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1986), pp. 218–227.
  8. K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, “Small-signal gain measurements in Ti:Al2O3 amplifier,” IEEE J. Quantum Electron. 24, 1016–1020 (1988).
    [CrossRef]
  9. L. G. DeShazer, J. M. Eggleston, K. W. Kangas, “Oscillator and amplifier performance of Ti:sapphire,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1986), pp. 228–234.
  10. J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
    [CrossRef]
  11. P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, A. Brun, “High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144–146 (1991).
    [PubMed]
  12. F. Salin, C. Rouyer, J. Squier, S. Coe, G. Mourou, “Amplification of 1 ps pulses at 1.053 μm in a Ti:Al2O3 regenerative amplifier,” Opt. Commun. 84, 67–69 (1991).
    [CrossRef]
  13. S. Basu, P. May, J.-M. Halbout, “64-dB amplification of 19-psec laser-diode pulses in a Ti–sapphire laser,” Opt. Lett. 14, 1272–1274 (1989).
    [CrossRef] [PubMed]
  14. K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master-oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
    [CrossRef]
  15. A. Kasapi, G. Y. Yin, M. Jain, “Pulsed Ti:sapphire laser seeded off the gain peak,” Appl. Opt. 35, 1999–2004 (1996).
    [CrossRef] [PubMed]
  16. D. S. Bethune, “Dye cell design for high-power low-divergence excimer-pumped dye lasers,” Appl. Opt. 20, 1897–1899 (1981).
    [CrossRef] [PubMed]
  17. D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
    [CrossRef]
  18. C. K. Ni, A. H. Kung, “Effective suppression of amplified spontaneous emission by stimulated Brillouin scattering phase conjugation,” Opt. Lett. 21, 1673–1675 (1996).
    [CrossRef] [PubMed]

1996

1993

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master-oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

1991

F. Salin, C. Rouyer, J. Squier, S. Coe, G. Mourou, “Amplification of 1 ps pulses at 1.053 μm in a Ti:Al2O3 regenerative amplifier,” Opt. Commun. 84, 67–69 (1991).
[CrossRef]

P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, A. Brun, “High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144–146 (1991).
[PubMed]

1989

S. Basu, P. May, J.-M. Halbout, “64-dB amplification of 19-psec laser-diode pulses in a Ti–sapphire laser,” Opt. Lett. 14, 1272–1274 (1989).
[CrossRef] [PubMed]

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Kung, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

1988

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, “Small-signal gain measurements in Ti:Al2O3 amplifier,” IEEE J. Quantum Electron. 24, 1016–1020 (1988).
[CrossRef]

J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
[CrossRef]

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

C. H. Muller, D. D. Lowenthal, M. A. DeFaccio, A. V. Smith, “High-efficiency, energy-scalable, coherent 130-nm source by four-wave mixing in Hg vapor,” Opt. Lett. 13, 651–653 (1988).
[CrossRef]

1987

L. Cabaret, C. Delsart, C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a VUV single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
[CrossRef]

1986

1981

1979

P. Drell, S. Chu, “A megawatt dye laser oscillator–amplifier system for high resolution spectroscopy,” Opt. Commun. 28, 343–348 (1979).
[CrossRef]

1977

M. M. Salour, “Powerful dye laser for oscillator–amplifier system for high resolution and coherent pulse spectroscopy,” Opt. Commun. 22, 202–206 (1977).
[CrossRef]

Aggarwal, R. L.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master-oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, “Small-signal gain measurements in Ti:Al2O3 amplifier,” IEEE J. Quantum Electron. 24, 1016–1020 (1988).
[CrossRef]

Barnes, J. C.

J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
[CrossRef]

Barnes, N. P.

J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
[CrossRef]

N. P. Barnes, D. K. Remelius, “Amplifier and line-narrowed oscillator performance of Ti:Al2O3,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1986), pp. 218–227.

Basu, S.

Bethune, D. S.

Blondel, C.

L. Cabaret, C. Delsart, C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a VUV single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
[CrossRef]

Brun, A.

Cabaret, L.

L. Cabaret, C. Delsart, C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a VUV single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
[CrossRef]

Chu, S.

P. Drell, S. Chu, “A megawatt dye laser oscillator–amplifier system for high resolution spectroscopy,” Opt. Commun. 28, 343–348 (1979).
[CrossRef]

Coe, S.

F. Salin, C. Rouyer, J. Squier, S. Coe, G. Mourou, “Amplification of 1 ps pulses at 1.053 μm in a Ti:Al2O3 regenerative amplifier,” Opt. Commun. 84, 67–69 (1991).
[CrossRef]

Cromwell, E.

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Kung, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

DeFaccio, M. A.

Delsart, C.

L. Cabaret, C. Delsart, C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a VUV single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
[CrossRef]

DeShazer, L. G.

L. G. DeShazer, J. M. Eggleston, K. W. Kangas, “Oscillator and amplifier performance of Ti:sapphire,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1986), pp. 228–234.

Drell, P.

P. Drell, S. Chu, “A megawatt dye laser oscillator–amplifier system for high resolution spectroscopy,” Opt. Commun. 28, 343–348 (1979).
[CrossRef]

Eggleston, J. M.

L. G. DeShazer, J. M. Eggleston, K. W. Kangas, “Oscillator and amplifier performance of Ti:sapphire,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1986), pp. 228–234.

Estable, F.

Fahey, R. E.

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, “Small-signal gain measurements in Ti:Al2O3 amplifier,” IEEE J. Quantum Electron. 24, 1016–1020 (1988).
[CrossRef]

Georges, P.

Grangier, P.

Halbout, J.-M.

Jain, M.

Kangas, K. W.

L. G. DeShazer, J. M. Eggleston, K. W. Kangas, “Oscillator and amplifier performance of Ti:sapphire,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1986), pp. 228–234.

Kasapi, A.

Kung, A. H.

C. K. Ni, A. H. Kung, “Effective suppression of amplified spontaneous emission by stimulated Brillouin scattering phase conjugation,” Opt. Lett. 21, 1673–1675 (1996).
[CrossRef] [PubMed]

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Kung, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

Lacovara, P.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master-oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

Lee, Y. T.

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Kung, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

Lowenthal, D. D.

May, P.

Miller, G. E.

J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
[CrossRef]

Moulton, P. F.

Mourou, G.

F. Salin, C. Rouyer, J. Squier, S. Coe, G. Mourou, “Amplification of 1 ps pulses at 1.053 μm in a Ti:Al2O3 regenerative amplifier,” Opt. Commun. 84, 67–69 (1991).
[CrossRef]

Muller, C. H.

Ni, C. K.

Poizat, J. P.

Remelius, D. K.

N. P. Barnes, D. K. Remelius, “Amplifier and line-narrowed oscillator performance of Ti:Al2O3,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1986), pp. 218–227.

Rockwell, D. A.

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

Rouyer, C.

F. Salin, C. Rouyer, J. Squier, S. Coe, G. Mourou, “Amplification of 1 ps pulses at 1.053 μm in a Ti:Al2O3 regenerative amplifier,” Opt. Commun. 84, 67–69 (1991).
[CrossRef]

Salin, F.

F. Salin, C. Rouyer, J. Squier, S. Coe, G. Mourou, “Amplification of 1 ps pulses at 1.053 μm in a Ti:Al2O3 regenerative amplifier,” Opt. Commun. 84, 67–69 (1991).
[CrossRef]

P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, A. Brun, “High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144–146 (1991).
[PubMed]

Salour, M. M.

M. M. Salour, “Powerful dye laser for oscillator–amplifier system for high resolution and coherent pulse spectroscopy,” Opt. Commun. 22, 202–206 (1977).
[CrossRef]

Sanchez, A.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master-oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

Schulz, P. A.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master-oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

Smith, A. V.

Squier, J.

F. Salin, C. Rouyer, J. Squier, S. Coe, G. Mourou, “Amplification of 1 ps pulses at 1.053 μm in a Ti:Al2O3 regenerative amplifier,” Opt. Commun. 84, 67–69 (1991).
[CrossRef]

Strauss, A. J.

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, “Small-signal gain measurements in Ti:Al2O3 amplifier,” IEEE J. Quantum Electron. 24, 1016–1020 (1988).
[CrossRef]

Trickl, T.

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Kung, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

Wall, K. F.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master-oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, “Small-signal gain measurements in Ti:Al2O3 amplifier,” IEEE J. Quantum Electron. 24, 1016–1020 (1988).
[CrossRef]

Yin, G. Y.

Appl. Opt.

IEEE J. Quantum Electron.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master-oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

K. F. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, “Small-signal gain measurements in Ti:Al2O3 amplifier,” IEEE J. Quantum Electron. 24, 1016–1020 (1988).
[CrossRef]

J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

M. M. Salour, “Powerful dye laser for oscillator–amplifier system for high resolution and coherent pulse spectroscopy,” Opt. Commun. 22, 202–206 (1977).
[CrossRef]

P. Drell, S. Chu, “A megawatt dye laser oscillator–amplifier system for high resolution spectroscopy,” Opt. Commun. 28, 343–348 (1979).
[CrossRef]

L. Cabaret, C. Delsart, C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a VUV single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
[CrossRef]

F. Salin, C. Rouyer, J. Squier, S. Coe, G. Mourou, “Amplification of 1 ps pulses at 1.053 μm in a Ti:Al2O3 regenerative amplifier,” Opt. Commun. 84, 67–69 (1991).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Kung, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

Other

L. G. DeShazer, J. M. Eggleston, K. W. Kangas, “Oscillator and amplifier performance of Ti:sapphire,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1986), pp. 228–234.

N. P. Barnes, D. K. Remelius, “Amplifier and line-narrowed oscillator performance of Ti:Al2O3,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1986), pp. 218–227.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the cw Ti:Al2O3 master oscillator–dye preamplifier–Ti:Al2O3 power amplifier laser system: HR, high reflective mirror; TFP, thin-film polarizer.

Fig. 2
Fig. 2

Final energy output at various wavelengths. Three different dyes, LDS867 (0.23 g/l), LDS821(0.13 g/l), and LDS759 (0.18 g/l) are used in the preamplifier. SLM, single longitudinal mode.

Fig. 3
Fig. 3

Temporal profiles of the pump beam, output from the dye preamplifier, and output after four passes in the first Ti:Al2O3 amplifier.

Fig. 4
Fig. 4

Temporal profiles of output from the phase-conjugate mirror, output after eight passes in the first Ti:Al2O3 amplifier, and the final output.

Fig. 5
Fig. 5

Shot-to-shot variation of the final output for fourteen consecutive pulses.

Fig. 6
Fig. 6

Profiles in the horizontal and vertical directions of the signal beams taken by a CCD camera. The smooth curves are Gaussian fits: (a) after four passes in the first Ti:Al2O3 amplifier, (b) extracted by the thin-film polarizer after eight passes in the first Ti:Al2O3 amplifier, (c) final output.

Fig. 7
Fig. 7

Simultaneous spectrum analyzer scan of the laser pulse before reflection by the phase-conjugate mirror (PCM) and the final output.

Metrics