Abstract

The possibility of using a photodiode in the Geiger mode for timing of short light pulses is studied. It is found that the transit time between the light pulse and the electrical response is determined by a reliable exponential growth of electron and hole populations in the depletion layer from the initial level because of the photoionization to a level meeting the detection threshold. This transit time depends on the photon number in the light pulse and has to be measured by an auxiliary linear detector. A device that allows precise timing in the 10-ps range, whatever the photon number beyond 100, is proposed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E Samain, “Le laser lune millimetrique et nouvelles méthodes de datation,” Ph.D. dissertation (Université de Nice Sophia Antipolis, Nice, France, 1995).
  2. P. Fridelance, E. Samain, C. Veillet, “T2L2—time transfer by laser link: a new optical time transfer generation,” Exp. Astron. 7, 193–207 (1997).
    [CrossRef]
  3. S. Cova, M. Ghioni, A. Lacaita, F. Zappa, “Avalanche photodiode and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
    [CrossRef] [PubMed]
  4. G Kirchner, F Koidl, “Automatic compensation of SPAD time walk effects,” in Proceedings of the Annual Eurolas Meeting, Munich, A. T. Sinclair, ed. (Royal Greenwich Observatory, Cambridge, UK, 1995), pp. 73–78.
  5. R. H. Kingston, “Detection of optical and infrared radiation,” 2nd ed. (Springer-Verlag, Berlin, 1978), Chap. 6, p. 52.
  6. P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiode,” RCA Rev. 35, 234–250 (1974).
  7. J. Conradi, “The distribution of gains in uniformly multiplying avalanche photodiodes: experimental,” IEEE Trans. Electron Devices ED-19, 713–718 (1972).
    [CrossRef]
  8. A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
    [CrossRef]

1997 (1)

P. Fridelance, E. Samain, C. Veillet, “T2L2—time transfer by laser link: a new optical time transfer generation,” Exp. Astron. 7, 193–207 (1997).
[CrossRef]

1996 (1)

1993 (1)

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

1974 (1)

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiode,” RCA Rev. 35, 234–250 (1974).

1972 (1)

J. Conradi, “The distribution of gains in uniformly multiplying avalanche photodiodes: experimental,” IEEE Trans. Electron Devices ED-19, 713–718 (1972).
[CrossRef]

Conradi, J.

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiode,” RCA Rev. 35, 234–250 (1974).

J. Conradi, “The distribution of gains in uniformly multiplying avalanche photodiodes: experimental,” IEEE Trans. Electron Devices ED-19, 713–718 (1972).
[CrossRef]

Cova, S.

S. Cova, M. Ghioni, A. Lacaita, F. Zappa, “Avalanche photodiode and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

Fridelance, P.

P. Fridelance, E. Samain, C. Veillet, “T2L2—time transfer by laser link: a new optical time transfer generation,” Exp. Astron. 7, 193–207 (1997).
[CrossRef]

Ghioni, M.

S. Cova, M. Ghioni, A. Lacaita, F. Zappa, “Avalanche photodiode and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

Kingston, R. H.

R. H. Kingston, “Detection of optical and infrared radiation,” 2nd ed. (Springer-Verlag, Berlin, 1978), Chap. 6, p. 52.

Kirchner, G

G Kirchner, F Koidl, “Automatic compensation of SPAD time walk effects,” in Proceedings of the Annual Eurolas Meeting, Munich, A. T. Sinclair, ed. (Royal Greenwich Observatory, Cambridge, UK, 1995), pp. 73–78.

Koidl, F

G Kirchner, F Koidl, “Automatic compensation of SPAD time walk effects,” in Proceedings of the Annual Eurolas Meeting, Munich, A. T. Sinclair, ed. (Royal Greenwich Observatory, Cambridge, UK, 1995), pp. 73–78.

Lacaita, A.

S. Cova, M. Ghioni, A. Lacaita, F. Zappa, “Avalanche photodiode and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

McIntyre, R. J.

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiode,” RCA Rev. 35, 234–250 (1974).

Ripamonti, G.

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

Samain, E

E Samain, “Le laser lune millimetrique et nouvelles méthodes de datation,” Ph.D. dissertation (Université de Nice Sophia Antipolis, Nice, France, 1995).

Samain, E.

P. Fridelance, E. Samain, C. Veillet, “T2L2—time transfer by laser link: a new optical time transfer generation,” Exp. Astron. 7, 193–207 (1997).
[CrossRef]

Veillet, C.

P. Fridelance, E. Samain, C. Veillet, “T2L2—time transfer by laser link: a new optical time transfer generation,” Exp. Astron. 7, 193–207 (1997).
[CrossRef]

Webb, P. P.

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiode,” RCA Rev. 35, 234–250 (1974).

Zappa, F.

S. Cova, M. Ghioni, A. Lacaita, F. Zappa, “Avalanche photodiode and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

Appl. Opt. (1)

Exp. Astron. (1)

P. Fridelance, E. Samain, C. Veillet, “T2L2—time transfer by laser link: a new optical time transfer generation,” Exp. Astron. 7, 193–207 (1997).
[CrossRef]

IEEE Trans. Electron Devices (1)

J. Conradi, “The distribution of gains in uniformly multiplying avalanche photodiodes: experimental,” IEEE Trans. Electron Devices ED-19, 713–718 (1972).
[CrossRef]

Nucl. Instrum. Methods A (1)

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

RCA Rev. (1)

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiode,” RCA Rev. 35, 234–250 (1974).

Other (3)

E Samain, “Le laser lune millimetrique et nouvelles méthodes de datation,” Ph.D. dissertation (Université de Nice Sophia Antipolis, Nice, France, 1995).

G Kirchner, F Koidl, “Automatic compensation of SPAD time walk effects,” in Proceedings of the Annual Eurolas Meeting, Munich, A. T. Sinclair, ed. (Royal Greenwich Observatory, Cambridge, UK, 1995), pp. 73–78.

R. H. Kingston, “Detection of optical and infrared radiation,” 2nd ed. (Springer-Verlag, Berlin, 1978), Chap. 6, p. 52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Output signal from the photodiode, proportional to the energetic electron or hole number N(t), for various initial values of N. The time origin is arbitrary.

Fig. 2
Fig. 2

Output signal for various applied inverse voltages V.

Fig. 3
Fig. 3

Comparison of experimental values 〈T〉 with the value calculated from Eq. (4) by τdup(N) = 45 ps.

Fig. 4
Fig. 4

Values 〈T〉 for various voltages.

Fig. 5
Fig. 5

Experimental value of δT.

Fig. 6
Fig. 6

Experimental workbench.

Fig. 7
Fig. 7

Transit time T versus total photon number m′.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n ± t + V ± n ± x = + α V - n - - β V + n + ,
T = k = 0 k max   τ dup 2 k m ,     2 k max + 1 = N threshold m , k max + 1 = 1 ln 2 ln N threshold - ln m .
T = τ dup N k max + 1 = τ dup N ln 2 ln N threshold - ln m .
T = τ dup N ln 2 ln N threshold - m = 1   P m ln m m = 1   P m .
τ dup N = ln 2 ln 1 + 1 / N   τ = ln 2 N   ln 1 + 1 / N   τ 0 .
δ τ dup N 2 = ln 2 ln 1 + 1 / N δ τ 2 = ln 2 N 2 ln 1 + 1 / N   τ 0 2 .
δ T 2 = k = 0 k max δ τ dup 2 k N initial 2 1 N initial τ dup N initial 2 k = 0 k max 1 2 k 1 N initial τ dup N initial 2 .
δ T 2 = τ dup N ln 2 2 δ k max 2 = τ dup N ln 2 2 1 m = 1   P m m = 1   P m × ln m - 1 m = 1   P m m = 1   P m ln m 2 .
P m 1 ,   m 2 = m = m 1 m 2   p m ,   m m = 1   p m ,   m ,
δ T = T m = 1 m τ dup N ln   2 0.34 rp m / r ,   m .

Metrics