Abstract

Scattering at visible frequencies from a two-dimensional silica/air photonic crystal material in the form of a fine fiber reveals the hexagonal crystal structure of the material. Oblique illumination allows the observation of first-order Bragg conditions even for a crystal structure with a pitch several times the wavelength of light. These scattering measurements demonstrate the feasibility of a low-loss waveguide based on photonic bandgap effects.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, T. J. Gmitter, “Photonic band-structure—the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989). See also the special issues of C. M. Bowden, J. P. Dowling, H. O. Everitt, eds., J. Opt. Soc. Am. B 10, 279–413 (1993); G. Kurizki, J. W. Haus, eds., J. Mod. Opt. 41, 2 (1994).
  2. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  3. P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, B. E. Hammons, “Optical-properties of 2-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
    [CrossRef]
  4. R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992);H.-B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of 2-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 68, 2927–2929 (1996);A. Rosenberg, R. J. Tonucci, H.-B. Lin, A. J. Campillo, “Near-infrared 2-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996);A. Rosenberg, R. J. Tonucci, H. B. Lin, E. L. Shirley, “Photonic-band-structure effects for low-index-contrast 2-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
    [CrossRef] [PubMed]
  5. K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, J. W. Haus, “Fabrication of 2-dimensional photonic band-structure with near-infrared band-gap,” Jpn. J. Appl. Phys. 33, L1463–L1465 (1994).
    [CrossRef]
  6. U. Grüning, V. Lehmann, C. M. Engelhardt, “2-dimensional infrared photonic band-gap structure-based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
    [CrossRef]
  7. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
    [CrossRef]
  8. P. St. J. Russell, T. A. Birks, D. Lloyd-Lucas, “Photonic Bloch waves and photonic band gaps,” in Confined Electrons and Photons, New Physics and Applications, E. Burstein, C. Weisbuch, eds. (Plenum, New York, 1995).
    [CrossRef]
  9. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N. J., 1995).
  10. J. C. Knight, D. M. Atkin, T. A. Birks, P. St. J. Russell, “All-silica single-mode optical-fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  11. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef] [PubMed]

1996 (2)

J. C. Knight, D. M. Atkin, T. A. Birks, P. St. J. Russell, “All-silica single-mode optical-fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

1995 (2)

U. Grüning, V. Lehmann, C. M. Engelhardt, “2-dimensional infrared photonic band-gap structure-based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[CrossRef]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

1994 (2)

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, B. E. Hammons, “Optical-properties of 2-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, J. W. Haus, “Fabrication of 2-dimensional photonic band-structure with near-infrared band-gap,” Jpn. J. Appl. Phys. 33, L1463–L1465 (1994).
[CrossRef]

1992 (1)

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992);H.-B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of 2-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 68, 2927–2929 (1996);A. Rosenberg, R. J. Tonucci, H.-B. Lin, A. J. Campillo, “Near-infrared 2-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996);A. Rosenberg, R. J. Tonucci, H. B. Lin, E. L. Shirley, “Photonic-band-structure effects for low-index-contrast 2-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef] [PubMed]

1989 (1)

E. Yablonovitch, T. J. Gmitter, “Photonic band-structure—the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989). See also the special issues of C. M. Bowden, J. P. Dowling, H. O. Everitt, eds., J. Opt. Soc. Am. B 10, 279–413 (1993); G. Kurizki, J. W. Haus, eds., J. Mod. Opt. 41, 2 (1994).

Atkin, D. M.

J. C. Knight, D. M. Atkin, T. A. Birks, P. St. J. Russell, “All-silica single-mode optical-fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Birks, T. A.

J. C. Knight, D. M. Atkin, T. A. Birks, P. St. J. Russell, “All-silica single-mode optical-fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

P. St. J. Russell, T. A. Birks, D. Lloyd-Lucas, “Photonic Bloch waves and photonic band gaps,” in Confined Electrons and Photons, New Physics and Applications, E. Burstein, C. Weisbuch, eds. (Plenum, New York, 1995).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Brennan, T. M.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, B. E. Hammons, “Optical-properties of 2-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

Campillo, A. J.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992);H.-B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of 2-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 68, 2927–2929 (1996);A. Rosenberg, R. J. Tonucci, H.-B. Lin, A. J. Campillo, “Near-infrared 2-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996);A. Rosenberg, R. J. Tonucci, H. B. Lin, E. L. Shirley, “Photonic-band-structure effects for low-index-contrast 2-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef] [PubMed]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Engelhardt, C. M.

U. Grüning, V. Lehmann, C. M. Engelhardt, “2-dimensional infrared photonic band-gap structure-based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[CrossRef]

Fan, S. H.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Ford, C. E.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992);H.-B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of 2-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 68, 2927–2929 (1996);A. Rosenberg, R. J. Tonucci, H.-B. Lin, A. J. Campillo, “Near-infrared 2-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996);A. Rosenberg, R. J. Tonucci, H. B. Lin, E. L. Shirley, “Photonic-band-structure effects for low-index-contrast 2-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef] [PubMed]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, “Photonic band-structure—the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989). See also the special issues of C. M. Bowden, J. P. Dowling, H. O. Everitt, eds., J. Opt. Soc. Am. B 10, 279–413 (1993); G. Kurizki, J. W. Haus, eds., J. Mod. Opt. 41, 2 (1994).

Gourley, P. L.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, B. E. Hammons, “Optical-properties of 2-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

Grüning, U.

U. Grüning, V. Lehmann, C. M. Engelhardt, “2-dimensional infrared photonic band-gap structure-based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[CrossRef]

Hammons, B. E.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, B. E. Hammons, “Optical-properties of 2-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

Haus, J. W.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, J. W. Haus, “Fabrication of 2-dimensional photonic band-structure with near-infrared band-gap,” Jpn. J. Appl. Phys. 33, L1463–L1465 (1994).
[CrossRef]

Hayashi, M.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, J. W. Haus, “Fabrication of 2-dimensional photonic band-structure with near-infrared band-gap,” Jpn. J. Appl. Phys. 33, L1463–L1465 (1994).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Inoue, K.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, J. W. Haus, “Fabrication of 2-dimensional photonic band-structure with near-infrared band-gap,” Jpn. J. Appl. Phys. 33, L1463–L1465 (1994).
[CrossRef]

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N. J., 1995).

Justus, B. L.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992);H.-B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of 2-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 68, 2927–2929 (1996);A. Rosenberg, R. J. Tonucci, H.-B. Lin, A. J. Campillo, “Near-infrared 2-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996);A. Rosenberg, R. J. Tonucci, H. B. Lin, E. L. Shirley, “Photonic-band-structure effects for low-index-contrast 2-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef] [PubMed]

Knight, J. C.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Lehmann, V.

U. Grüning, V. Lehmann, C. M. Engelhardt, “2-dimensional infrared photonic band-gap structure-based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[CrossRef]

Lloyd-Lucas, D.

P. St. J. Russell, T. A. Birks, D. Lloyd-Lucas, “Photonic Bloch waves and photonic band gaps,” in Confined Electrons and Photons, New Physics and Applications, E. Burstein, C. Weisbuch, eds. (Plenum, New York, 1995).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N. J., 1995).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Roberts, P. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Russell, P. St. J.

J. C. Knight, D. M. Atkin, T. A. Birks, P. St. J. Russell, “All-silica single-mode optical-fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

P. St. J. Russell, T. A. Birks, D. Lloyd-Lucas, “Photonic Bloch waves and photonic band gaps,” in Confined Electrons and Photons, New Physics and Applications, E. Burstein, C. Weisbuch, eds. (Plenum, New York, 1995).
[CrossRef]

Sakoda, K.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, J. W. Haus, “Fabrication of 2-dimensional photonic band-structure with near-infrared band-gap,” Jpn. J. Appl. Phys. 33, L1463–L1465 (1994).
[CrossRef]

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Tonucci, R. J.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992);H.-B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of 2-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 68, 2927–2929 (1996);A. Rosenberg, R. J. Tonucci, H.-B. Lin, A. J. Campillo, “Near-infrared 2-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996);A. Rosenberg, R. J. Tonucci, H. B. Lin, E. L. Shirley, “Photonic-band-structure effects for low-index-contrast 2-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef] [PubMed]

Vawter, G. A.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, B. E. Hammons, “Optical-properties of 2-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Wada, M.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, J. W. Haus, “Fabrication of 2-dimensional photonic band-structure with near-infrared band-gap,” Jpn. J. Appl. Phys. 33, L1463–L1465 (1994).
[CrossRef]

Wendt, J. R.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, B. E. Hammons, “Optical-properties of 2-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N. J., 1995).

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, “Photonic band-structure—the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989). See also the special issues of C. M. Bowden, J. P. Dowling, H. O. Everitt, eds., J. Opt. Soc. Am. B 10, 279–413 (1993); G. Kurizki, J. W. Haus, eds., J. Mod. Opt. 41, 2 (1994).

Yamanaka, A.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, J. W. Haus, “Fabrication of 2-dimensional photonic band-structure with near-infrared band-gap,” Jpn. J. Appl. Phys. 33, L1463–L1465 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, B. E. Hammons, “Optical-properties of 2-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

U. Grüning, V. Lehmann, C. M. Engelhardt, “2-dimensional infrared photonic band-gap structure-based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[CrossRef]

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, J. W. Haus, “Fabrication of 2-dimensional photonic band-structure with near-infrared band-gap,” Jpn. J. Appl. Phys. 33, L1463–L1465 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, “Photonic band-structure—the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989). See also the special issues of C. M. Bowden, J. P. Dowling, H. O. Everitt, eds., J. Opt. Soc. Am. B 10, 279–413 (1993); G. Kurizki, J. W. Haus, eds., J. Mod. Opt. 41, 2 (1994).

Science (1)

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992);H.-B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of 2-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 68, 2927–2929 (1996);A. Rosenberg, R. J. Tonucci, H.-B. Lin, A. J. Campillo, “Near-infrared 2-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996);A. Rosenberg, R. J. Tonucci, H. B. Lin, E. L. Shirley, “Photonic-band-structure effects for low-index-contrast 2-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef] [PubMed]

Other (3)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

P. St. J. Russell, T. A. Birks, D. Lloyd-Lucas, “Photonic Bloch waves and photonic band gaps,” in Confined Electrons and Photons, New Physics and Applications, E. Burstein, C. Weisbuch, eds. (Plenum, New York, 1995).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, N. J., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Definition of the coordinate system used in describing the experiment. The incident light propagates along the ζ direction in the material, indicated by the upper arrow. The orientation of the crystal with respect to the incident plane is given by θ.

Fig. 2
Fig. 2

Scanning electron micrograph of a typical sample used in the experiments. The fiber shown here had a diameter of approximately 22 μm across the flats, a pitch of approximately 1.3 μm, and FF ≈ 5%.

Fig. 3
Fig. 3

Schematic diagram of the experiment. PD, photodiode.

Fig. 4
Fig. 4

(a) Measured values of the fiber reflectance for incidence along the Γ–X (thick curve) and Γ–J (thin curve) directions as a function of ζ for a fiber with Λ ≈ 1.33 ± 0.07 μm and the air FF ≪ 1%. (b) Reflectance as the crystal fiber rotates around its axis at the three ζ angles corresponding to the Bragg points in (a).

Fig. 5
Fig. 5

Same as in Fig. 4(a) but for an air FF ≈ 7% and showing the broadening of the partial stop bands in comparison with Fig. 4. The crystal used here has a slightly different pitch (Λ = 1.10 ± 0.05 μm).

Metrics