Abstract

A new type of all-single-mode fiber depolarizer, based upon a 2 × 2 coupler and a recirculating delay line and useable with a coherent light source, is proposed and demonstrated. The reduction in the degree of polarization is examined theoretically and experimentally. Design criteria and principles are discussed. With a narrow-band laser source, the degree of polarization was tuned between 99.8% and 1.15%. Experiments illustrate how this depolarizer can eliminate the effects of induced polarization fluctuation in a polarization-sensitive fiber-optic system. The experimental results support the theoretical model.

© 1998 Optical Society of America

Full Article  |  PDF Article
Related Articles
New diagrammatical method for calculation of fiber-optic Lyot depolarizer performance

Kazumasa Takada, Kazunori Chida, and Juichi Noda
J. Opt. Soc. Am. A 5(11) 1905-1917 (1988)

Fiber-optic pseudodepolarizer based on birefringence modulation

Wei Jin, George Stewart, Kenneth Crawford, and B. Culshaw
Opt. Lett. 20(16) 1737-1739 (1995)

Partially polarized fiber-optic gyro

J. Blake, B. Szafraniec, and J. Feth
Opt. Lett. 21(15) 1192-1194 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription