Abstract

A new type of all-single-mode fiber depolarizer, based upon a 2 × 2 coupler and a recirculating delay line and useable with a coherent light source, is proposed and demonstrated. The reduction in the degree of polarization is examined theoretically and experimentally. Design criteria and principles are discussed. With a narrow-band laser source, the degree of polarization was tuned between 99.8% and 1.15%. Experiments illustrate how this depolarizer can eliminate the effects of induced polarization fluctuation in a polarization-sensitive fiber-optic system. The experimental results support the theoretical model.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bruyere, O. Audouin, “Penality in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Photon. Technol. Lett. 6, 654–656 (1994).
    [CrossRef]
  2. A. D. Kersey, M. J. Marrone, A. Dandridge, “Observation of input-polarization-induced phase noise in interferometric fiber-optic sensors,” Opt. Lett. 13, 847–849 (1988).
    [CrossRef] [PubMed]
  3. T. Okoshi, “Polarization-state control schemes for heterodyne or homodyne optical fiber communications,” J. Lightwave Technol. 3, 1232–1237 (1985).
    [CrossRef]
  4. J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
    [CrossRef]
  5. K. Bohm, K. Petermann, “Performance of Lyot depolarizers with birefringent single-mode fibers,” J. Lightwave Technol. 1, 71–74 (1983).
    [CrossRef]
  6. R. Noe, H. Heidrich, D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
    [CrossRef]
  7. A. D. Kersey, A. Dandridge, M. J. Marrone, “Single-mode fiber pseudo-depolarizer,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 360–364 (1987).
    [CrossRef]
  8. J. L. Sakai, S. Machida, T. Kimura, “Degree of polarization in anisotropic single-mode fibers: theory,” IEEE J. Quantum Electron. 18, 488–495 (1982).
    [CrossRef]
  9. I. P. Kaminov, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
    [CrossRef]
  10. S. C. Rashleigh, W. K. Burns, R. P. Moeller, R. Ulrich, “Polarization holding in birefringent single-mode fibers,” Opt. Lett. 7, 40–42 (1982).
    [CrossRef] [PubMed]
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).
  12. A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” J. Lightwave Technol. 3, 135–144 (1985).
    [CrossRef]
  13. D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
    [CrossRef]
  14. D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990), Chap. 5 and Appendix B.
  15. K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
    [CrossRef]
  16. H. C. Lefevre, “Single-mode fiber fraction wave devices and polarization controllers,” Electron. Lett. 2, 778–780 (1980).
    [CrossRef]
  17. S. C. Rashleigh, “Origin and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1, 312–330 (1983).
    [CrossRef]
  18. R. Ulrich, A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979).
    [CrossRef] [PubMed]

1994

F. Bruyere, O. Audouin, “Penality in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Photon. Technol. Lett. 6, 654–656 (1994).
[CrossRef]

1991

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

1988

R. Noe, H. Heidrich, D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
[CrossRef]

A. D. Kersey, M. J. Marrone, A. Dandridge, “Observation of input-polarization-induced phase noise in interferometric fiber-optic sensors,” Opt. Lett. 13, 847–849 (1988).
[CrossRef] [PubMed]

1986

J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
[CrossRef]

1985

T. Okoshi, “Polarization-state control schemes for heterodyne or homodyne optical fiber communications,” J. Lightwave Technol. 3, 1232–1237 (1985).
[CrossRef]

A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” J. Lightwave Technol. 3, 135–144 (1985).
[CrossRef]

1983

K. Bohm, K. Petermann, “Performance of Lyot depolarizers with birefringent single-mode fibers,” J. Lightwave Technol. 1, 71–74 (1983).
[CrossRef]

S. C. Rashleigh, “Origin and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1, 312–330 (1983).
[CrossRef]

1982

S. C. Rashleigh, W. K. Burns, R. P. Moeller, R. Ulrich, “Polarization holding in birefringent single-mode fibers,” Opt. Lett. 7, 40–42 (1982).
[CrossRef] [PubMed]

J. L. Sakai, S. Machida, T. Kimura, “Degree of polarization in anisotropic single-mode fibers: theory,” IEEE J. Quantum Electron. 18, 488–495 (1982).
[CrossRef]

1981

I. P. Kaminov, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[CrossRef]

1980

H. C. Lefevre, “Single-mode fiber fraction wave devices and polarization controllers,” Electron. Lett. 2, 778–780 (1980).
[CrossRef]

1979

Audouin, O.

F. Bruyere, O. Audouin, “Penality in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Photon. Technol. Lett. 6, 654–656 (1994).
[CrossRef]

Barlow, A. J.

A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” J. Lightwave Technol. 3, 135–144 (1985).
[CrossRef]

Bohm, K.

K. Bohm, K. Petermann, “Performance of Lyot depolarizers with birefringent single-mode fibers,” J. Lightwave Technol. 1, 71–74 (1983).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Bruyere, F.

F. Bruyere, O. Audouin, “Penality in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Photon. Technol. Lett. 6, 654–656 (1994).
[CrossRef]

Burns, W. K.

Dandridge, A.

A. D. Kersey, M. J. Marrone, A. Dandridge, “Observation of input-polarization-induced phase noise in interferometric fiber-optic sensors,” Opt. Lett. 13, 847–849 (1988).
[CrossRef] [PubMed]

A. D. Kersey, A. Dandridge, M. J. Marrone, “Single-mode fiber pseudo-depolarizer,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 360–364 (1987).
[CrossRef]

Day, G. W.

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

Etzel, S. M.

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

Heidrich, H.

R. Noe, H. Heidrich, D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
[CrossRef]

Hoffmann, D.

R. Noe, H. Heidrich, D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
[CrossRef]

Kaminov, I. P.

I. P. Kaminov, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. J. Marrone, A. Dandridge, “Observation of input-polarization-induced phase noise in interferometric fiber-optic sensors,” Opt. Lett. 13, 847–849 (1988).
[CrossRef] [PubMed]

A. D. Kersey, A. Dandridge, M. J. Marrone, “Single-mode fiber pseudo-depolarizer,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 360–364 (1987).
[CrossRef]

Kimura, T.

J. L. Sakai, S. Machida, T. Kimura, “Degree of polarization in anisotropic single-mode fibers: theory,” IEEE J. Quantum Electron. 18, 488–495 (1982).
[CrossRef]

Kliger, D. S.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990), Chap. 5 and Appendix B.

Lefevre, H. C.

H. C. Lefevre, “Single-mode fiber fraction wave devices and polarization controllers,” Electron. Lett. 2, 778–780 (1980).
[CrossRef]

Lewis, J. W.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990), Chap. 5 and Appendix B.

Machida, S.

J. L. Sakai, S. Machida, T. Kimura, “Degree of polarization in anisotropic single-mode fibers: theory,” IEEE J. Quantum Electron. 18, 488–495 (1982).
[CrossRef]

Marrone, M. J.

A. D. Kersey, M. J. Marrone, A. Dandridge, “Observation of input-polarization-induced phase noise in interferometric fiber-optic sensors,” Opt. Lett. 13, 847–849 (1988).
[CrossRef] [PubMed]

A. D. Kersey, A. Dandridge, M. J. Marrone, “Single-mode fiber pseudo-depolarizer,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 360–364 (1987).
[CrossRef]

Moeller, R. P.

Noda, J.

K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
[CrossRef]

Noe, R.

R. Noe, H. Heidrich, D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
[CrossRef]

Noka, J.

J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

Okamoto, K.

J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
[CrossRef]

Okoshi, T.

T. Okoshi, “Polarization-state control schemes for heterodyne or homodyne optical fiber communications,” J. Lightwave Technol. 3, 1232–1237 (1985).
[CrossRef]

Petermann, K.

K. Bohm, K. Petermann, “Performance of Lyot depolarizers with birefringent single-mode fibers,” J. Lightwave Technol. 1, 71–74 (1983).
[CrossRef]

Randall, C. E.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990), Chap. 5 and Appendix B.

Rashleigh, S. C.

S. C. Rashleigh, “Origin and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1, 312–330 (1983).
[CrossRef]

S. C. Rashleigh, W. K. Burns, R. P. Moeller, R. Ulrich, “Polarization holding in birefringent single-mode fibers,” Opt. Lett. 7, 40–42 (1982).
[CrossRef] [PubMed]

Rose, A. H.

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

Sakai, J. L.

J. L. Sakai, S. Machida, T. Kimura, “Degree of polarization in anisotropic single-mode fibers: theory,” IEEE J. Quantum Electron. 18, 488–495 (1982).
[CrossRef]

Sasaki, Y.

J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

Simon, A.

Takada, K.

K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
[CrossRef]

Tang, D.

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

Ulrich, R.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Appl. Opt.

Electron. Lett.

H. C. Lefevre, “Single-mode fiber fraction wave devices and polarization controllers,” Electron. Lett. 2, 778–780 (1980).
[CrossRef]

IEEE J. Quantum Electron.

J. L. Sakai, S. Machida, T. Kimura, “Degree of polarization in anisotropic single-mode fibers: theory,” IEEE J. Quantum Electron. 18, 488–495 (1982).
[CrossRef]

I. P. Kaminov, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Bruyere, O. Audouin, “Penality in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Photon. Technol. Lett. 6, 654–656 (1994).
[CrossRef]

J. Lightwave Technol.

S. C. Rashleigh, “Origin and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1, 312–330 (1983).
[CrossRef]

K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
[CrossRef]

A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” J. Lightwave Technol. 3, 135–144 (1985).
[CrossRef]

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

T. Okoshi, “Polarization-state control schemes for heterodyne or homodyne optical fiber communications,” J. Lightwave Technol. 3, 1232–1237 (1985).
[CrossRef]

J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

K. Bohm, K. Petermann, “Performance of Lyot depolarizers with birefringent single-mode fibers,” J. Lightwave Technol. 1, 71–74 (1983).
[CrossRef]

R. Noe, H. Heidrich, D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988).
[CrossRef]

Opt. Lett.

Other

A. D. Kersey, A. Dandridge, M. J. Marrone, “Single-mode fiber pseudo-depolarizer,” in Fiber Optic and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 360–364 (1987).
[CrossRef]

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990), Chap. 5 and Appendix B.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration of optical fiber recirculating delay line.

Fig. 2
Fig. 2

Range of degree of polarization versus linear birefringence (δ l ) with k = 0.67, θ = π/3, and δ c = π/3.

Fig. 3
Fig. 3

Range of degree of polarization versus azimuth of linear birefringence (θ) with k = 0.67, δ l = π/3, and δ c = π/3.

Fig. 4
Fig. 4

Range of degree of polarization versus circular birefringence (δ c ) with k = 0.67, δ l = π/3, and θ = π/3.

Fig. 5
Fig. 5

Range of degree of polarization versus coupling coefficient (k) with the optimum condition δ l = π, θ = π (arbitrary), and δ c = π.

Fig. 6
Fig. 6

Optimum degree of polarization for all possible input polarization states when k = 2/3, δ l = π, θ = π (arbitrary), and δ c = π. The input degree of polarization was 1. The optimum output degree of polarization was 0.001 (30 dB lower).

Fig. 7
Fig. 7

Experimental setup to measure the degree of polarization. LD, laser diode; O, objective lens; DC, single-mode fiber 2 × 2 directional coupler; PC1 and PC2, polarization controllers; C, compensator; A, analyzer, PM, optical powermeter.

Fig. 8
Fig. 8

Experimental setup for application of a tunable depolarizer in a polarization-sensitive system. LD, laser diode; O, objective lens; DC, single-mode fiber directional coupler; PC’s, polarization controllers; SMF, single-mode fiber; A, analyzer; PM, photodetector with preamplifier; O/P, output to oscilloscope.

Fig. 9
Fig. 9

Output light intensity detected following the analyzer was monitored over a 50-s time interval without (left half of each photograph) and with (right half of each photograph) the birefringence variation created by adjusting the polarization controller PC3 in Fig. 8. Polarization perturbation of (a) a single-mode fiber (20 m) polarization-sensitive system with the degree of polarization adjusted to 99.8% and (b) of the same system with the degree of polarization adjusted to 1.15%.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

R l δ l ,   θ = exp i δ l / 2 cos 2 θ + exp - i δ l / 2 sin 2 θ 2 i   sin θ cos θ sin δ l / 2 2 i   sin θ cos θ sin δ l / 2 exp - i δ l / 2 cos 2 θ + exp [ i δ l / 2 sin 2 θ ,
R c δ c = cos δ c / 2 - sin δ c / 2 sin δ c / 2 cos δ c / 2 ,
J i ψ ,   χ = I i 2 1 + cos 2 ψ cos 2 χ sin 2 ψ cos 2 χ + i   sin 2 χ sin 2 ψ cos 2 χ - i   sin 2 χ 1 - cos 2 ψ cos 2 χ
I i = 1 0 0 1 ,     K c = k 0 0 k , K d = 1 - k 0 0 1 - k ,
J = MJ i M + ,
M 0 = K d , M 1 = K c R c R l K c , M 2 = K c R c R l K d R c R l K c , M 3 = K c R c R l K d R c R l K d R c R l K c , M n = K c R c R l K d n - 1 R c R l K c ,
J 0 = M 0 J i M 0 + , J 1 = M 1 J i M 1 + , J 2 = M 2 J i M 2 + , J n = M n J i M n + .
J e = J 0 + J 1 + J 2 + = n = 0   J n .
I e = Tr J e .
I e = I i .
DOP % = 1 - 4 det   J e / Tr   J e 2 1 / 2 ,
- π / 2 ψ π / 2 ,     - π / 4 χ π / 4 .
δ l = ± 2 m + 1 π ,     θ = arbitrary , δ c = ± 2 m + 1 π ,
DOP % = 100   I max ,   θ a - I min ,   θ a I max ,   θ a + I min ,   θ a ,

Metrics