Abstract

It is shown that, for a given surface pressure, the atmospheric vertical temperature profile has a negligible influence on the Rayleigh optical depth. This contradicts the Bucholtz recommendation for the use of values that vary with air mass type. The influence of atmospheric water vapor amount on the Rayleigh optical depth is also investigated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [CrossRef] [PubMed]
  2. U.S. Standard Atmosphere 1962 (U.S. GPO, Washington, D.C., 1962).
  3. U.S. Standard Atmosphere Supplement 1966 (U.S. GPO, Washington, D.C., 1966).
  4. K. E. Erickson, “Investigation of the invariance of atmospheric dispersion with a long-path interferometer,” J. Opt. Soc. Am. 52, 777–780 (1962).
    [CrossRef]
  5. B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
    [CrossRef]

1995 (1)

1966 (1)

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

1962 (1)

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Metrologia (1)

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Other (2)

U.S. Standard Atmosphere 1962 (U.S. GPO, Washington, D.C., 1962).

U.S. Standard Atmosphere Supplement 1966 (U.S. GPO, Washington, D.C., 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

τ λ ,   z 0 = z 0   σ λ N z d z ,
z 0   N z d z = N s T s P s z 0 P z T z d z ,
z 0   N z d z = P surf 0 - d P M a g z = P surf M a g ¯ z 0 ,
g ¯ z 0 g z 0 = 1 - 23 × 10 - 4 ± 10 - 4 .
τ λ ,   z 0 = z 0   σ da λ N da z + σ wv λ N wv z d z = σ da λ N da col + σ wv λ N wv col ,
P surf = N da col M da + N wv col M wv g ¯ z 0 .
τ λ ,   z 0 = σ da λ P surf g ¯ z 0 M da 1 - N wv col M wv g ¯ z 0 P surf × 1 - σ wv M da σ da M wv .

Metrics