Abstract

We present an improved theory of image formation by reflection interference contrast microscopy (RICM) for structural studies of stratified films on planar substrates and propose a new theoretical approach to analyzing the surface profile of nonplanar films. We demonstrate the validity of the new approach by analyzing the fringe patterns of RICM images from wedge-shaped liquid films and spherical probes. By simulation of various scenarios, we study the effect of finite-aperture illumination and the shape of the nonplanar interface on the interference fringe pattern of RICM images. We show how the reconstruction of the microscopic topography of the sample from the fringe spacing is corrected by angular and curvature correction terms. We discuss the variation of the mean intensity of the fringe patterns and the decay in the fringe amplitude with increasing fringe order that is caused by nonplanar interfaces of different slope.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (52)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription