Abstract

We present a folded free-space polarization-controlled optical multistage interconnection network (MIN) based on a dilated bypass–exchange switch (DBS) design that uses compact polarization-selective diffractive optical elements (PDOE’s). The folded MIN design has several advantages over that of the traditional transparent MIN, including compactness, spatial filtering of unwanted higher-order diffraction terms leading to an improved signal-to-noise ratio (SNR), and ease of alignment. We experimentally characterize a folded 2 × 2 switch, as well as a 4 × 4 and an 8 × 8 folded MIN that we have designed and fabricated. We fabricated an array of off-axis Fresnel lenslet PDOE’s with a 30:1 SNR and used it to construct a 2 × 2 DBS with a measured SNR of 60:1. Using this PDOE array in a 4 × 4 MIN resulted in an increased SNR of 120:1, highlighting the filtering effect of the folded design.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. K. Ailiwadi, “Photonic switching architectures and their comparison,” in Frontiers of Computing Systems Research, S. K. Tewksbury, ed. (Plenum, New York, 1990), Vol. 1, pp. 129–186.
    [CrossRef]
  2. T. Sawano, S. Suzuki, M. Fujiwara, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–340 (1995).
    [CrossRef]
  3. F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices,” Appl. Opt. 32, 5153–5171 (1993).
    [CrossRef] [PubMed]
  4. G. A. DeBiase, “Optical multistage interconnection networks for large-scale multiprocessor systems,” Appl. Opt. 27, 2017–2021 (1988).
    [CrossRef]
  5. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
    [CrossRef] [PubMed]
  6. K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
    [CrossRef]
  7. D. M. Marom, D. Mendlovic, “Compact all-optical bypass–exchange switch,” Appl. Opt. 35, 248–253 (1996).
    [CrossRef] [PubMed]
  8. F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication and applications,” Appl. Opt. 34, 256–266 (1995).
    [CrossRef] [PubMed]
  9. A. V. Krishnamoorthy, F. Xu, J. E. Ford, Y. Fainman, “Polarization-controlled multistage switch based on polarization-selective computer-generated holograms,” Appl. Opt. 36, 997–1010 (1997).
    [CrossRef] [PubMed]
  10. F. Heismann, A. F. Ambrose, T. O. Murphy, M. S. Whalen, “Polarization-independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1343 (1993).
    [CrossRef]
  11. K. Padmanabhan, A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun. COM-35, 1357–1365 (1987).
    [CrossRef]
  12. J. E. Ford, F. Xu, K. Urquhart, Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 18, 456–458 (1993).
    [CrossRef] [PubMed]
  13. K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
    [CrossRef] [PubMed]
  14. A. Yariv, Quantum Electronics (Wiley, New York, 1989), Chap. 6.
  15. F. Xu, R. C. Tyan, Y. Fainman, “Single-substrate birefringent computer-generated holograms,” Opt. Lett. 21, 516–518 (1996).
    [CrossRef] [PubMed]
  16. D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
    [CrossRef]
  17. J. A. Thomas, M. Lasher, Y. Fainman, P. Soltan, “A PLZT-based dynamic diffractive optical element for high speed random-access beam steering,” in Optical Scanning Systems: Design and Application, L. Beiser, S. F. Sagan, eds., Proc. SPIE3131, 124–132 (1997).
    [CrossRef]
  18. N. Nieuborg, A. Kirk, B. Morlion, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive optical elements with an index-matching gap material,” Appl. Opt. 36, 4681–4685 (1997).
    [CrossRef] [PubMed]
  19. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, A. Scherer, “Form birefringent computer-generated holograms,” Opt. Lett. 21, 1513–1515 (1996).
    [CrossRef] [PubMed]
  20. E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
    [CrossRef]

1997 (2)

A. V. Krishnamoorthy, F. Xu, J. E. Ford, Y. Fainman, “Polarization-controlled multistage switch based on polarization-selective computer-generated holograms,” Appl. Opt. 36, 997–1010 (1997).
[CrossRef] [PubMed]

N. Nieuborg, A. Kirk, B. Morlion, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive optical elements with an index-matching gap material,” Appl. Opt. 36, 4681–4685 (1997).
[CrossRef] [PubMed]

1996 (3)

1995 (2)

F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication and applications,” Appl. Opt. 34, 256–266 (1995).
[CrossRef] [PubMed]

T. Sawano, S. Suzuki, M. Fujiwara, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–340 (1995).
[CrossRef]

1994 (3)

1993 (3)

1991 (1)

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

1988 (2)

1987 (1)

K. Padmanabhan, A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun. COM-35, 1357–1365 (1987).
[CrossRef]

Ailiwadi, N. K.

N. K. Ailiwadi, “Photonic switching architectures and their comparison,” in Frontiers of Computing Systems Research, S. K. Tewksbury, ed. (Plenum, New York, 1990), Vol. 1, pp. 129–186.
[CrossRef]

Ambrose, A. F.

F. Heismann, A. F. Ambrose, T. O. Murphy, M. S. Whalen, “Polarization-independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1343 (1993).
[CrossRef]

Brubaker, J. L.

Cheng, C.-C.

Cloonan, T. J.

Crisci, R. J.

DeBiase, G. A.

Fainman, Y.

Ford, J. E.

Fujiwara, M.

T. Sawano, S. Suzuki, M. Fujiwara, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–340 (1995).
[CrossRef]

Grann, E. B.

Heismann, F.

F. Heismann, A. F. Ambrose, T. O. Murphy, M. S. Whalen, “Polarization-independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1343 (1993).
[CrossRef]

Hinterlong, S. J.

Hinton, H. S.

Johnson, K. M.

Kerbis, E.

Kirk, A.

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, F. Xu, J. E. Ford, Y. Fainman, “Polarization-controlled multistage switch based on polarization-selective computer-generated holograms,” Appl. Opt. 36, 997–1010 (1997).
[CrossRef] [PubMed]

Kuhlow, B.

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

Lasher, M.

J. A. Thomas, M. Lasher, Y. Fainman, P. Soltan, “A PLZT-based dynamic diffractive optical element for high speed random-access beam steering,” in Optical Scanning Systems: Design and Application, L. Beiser, S. F. Sagan, eds., Proc. SPIE3131, 124–132 (1997).
[CrossRef]

Lee, S. H.

Lentine, A. L.

Marchand, P.

Marom, D. M.

Matsumoto, T.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

McCormick, F. B.

Mendlovic, D.

Moharam, M. G.

Morlion, B.

Morrison, R. L.

Murphy, T. O.

F. Heismann, A. F. Ambrose, T. O. Murphy, M. S. Whalen, “Polarization-independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1343 (1993).
[CrossRef]

Netravali, A.

K. Padmanabhan, A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun. COM-35, 1357–1365 (1987).
[CrossRef]

Nieuborg, N.

Noguchi, K.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

Novotny, R. A.

Padmanabhan, K.

K. Padmanabhan, A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun. COM-35, 1357–1365 (1987).
[CrossRef]

Pawlowski, E.

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

Pommet, D. A.

Sakano, T.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

Sasian, J. M.

Sawano, T.

T. Sawano, S. Suzuki, M. Fujiwara, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–340 (1995).
[CrossRef]

Scherer, A.

Shamir, J.

Soltan, P.

J. A. Thomas, M. Lasher, Y. Fainman, P. Soltan, “A PLZT-based dynamic diffractive optical element for high speed random-access beam steering,” in Optical Scanning Systems: Design and Application, L. Beiser, S. F. Sagan, eds., Proc. SPIE3131, 124–132 (1997).
[CrossRef]

Sun, P.-C.

Surette, M. R.

Suzuki, S.

T. Sawano, S. Suzuki, M. Fujiwara, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–340 (1995).
[CrossRef]

Thienpont, H.

Thomas, J. A.

J. A. Thomas, M. Lasher, Y. Fainman, P. Soltan, “A PLZT-based dynamic diffractive optical element for high speed random-access beam steering,” in Optical Scanning Systems: Design and Application, L. Beiser, S. F. Sagan, eds., Proc. SPIE3131, 124–132 (1997).
[CrossRef]

Tooley, F. A. P.

Tyan, R. C.

Tyan, R.-C.

Urquhart, K.

Urquhart, K. S.

Veretennicoff, I.

Walker, S. L.

Whalen, M. S.

F. Heismann, A. F. Ambrose, T. O. Murphy, M. S. Whalen, “Polarization-independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1343 (1993).
[CrossRef]

Xu, F.

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1989), Chap. 6.

Appl. Opt. (1)

A. V. Krishnamoorthy, F. Xu, J. E. Ford, Y. Fainman, “Polarization-controlled multistage switch based on polarization-selective computer-generated holograms,” Appl. Opt. 36, 997–1010 (1997).
[CrossRef] [PubMed]

Appl. Opt. (7)

IEEE Photon. Technol. Lett. (1)

F. Heismann, A. F. Ambrose, T. O. Murphy, M. S. Whalen, “Polarization-independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1343 (1993).
[CrossRef]

IEEE Trans. Commun. (1)

K. Padmanabhan, A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun. COM-35, 1357–1365 (1987).
[CrossRef]

J. Lightwave Technol. (2)

T. Sawano, S. Suzuki, M. Fujiwara, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–340 (1995).
[CrossRef]

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

Opt. Lett. (3)

Other (3)

J. A. Thomas, M. Lasher, Y. Fainman, P. Soltan, “A PLZT-based dynamic diffractive optical element for high speed random-access beam steering,” in Optical Scanning Systems: Design and Application, L. Beiser, S. F. Sagan, eds., Proc. SPIE3131, 124–132 (1997).
[CrossRef]

A. Yariv, Quantum Electronics (Wiley, New York, 1989), Chap. 6.

N. K. Ailiwadi, “Photonic switching architectures and their comparison,” in Frontiers of Computing Systems Research, S. K. Tewksbury, ed. (Plenum, New York, 1990), Vol. 1, pp. 129–186.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

BES functionality block diagram: solid lines, bypass mode in which the input to channel 1 goes to the output of channel 1; dashed lines, exchange mode in which the input to channel 1 goes to that output of channel 2 and vice versa.

Fig. 2
Fig. 2

Optical implementation of the BES: the first BCGH collimates the two input beams and the second BCGH directs the output beams depending on the polarization states. The voltage on the polarization rotator determines the state of the switch.

Fig. 3
Fig. 3

Optical implementation of the DBS. Each BCGH element performs 1 × 2 switching, depending on the state of the polarization-rotator element. The input and the output states of the two channels are identical, permitting filtering with a polarizer of linear cross talk at the output.

Fig. 4
Fig. 4

Folded optical DBS. Similar elements (i.e., BCGH’s, polarization rotators) are placed in two-dimensional arrays. Micromirrors reflect only the desired diffraction order and filter out the unwanted orders. The four polarization rotators are always in the same state and can be replaced by one larger-sized element.

Fig. 5
Fig. 5

Folded 8 × 8 optical MIN with one input beam, shown propagating from channel 1 to channel 5. In this example there are three stages of DBS’s, which require three round-trip travels in the micromirror cavity.

Fig. 6
Fig. 6

Photograph of the experimental demonstration system of the folded optical MIN. The cavity is defined by two micromirror arrays deposited upon glass substrates. The polarizer is used to filter out the undesirable linear cross talk that is due to incorrect polarization rotation.

Fig. 7
Fig. 7

CCD Image of a single BCGH element within an 8 × 6 array, showing multifunctional superposition of polarization-selective Fresnel lenslets.

Fig. 8
Fig. 8

CCD pictures of (a) the output of one BCGH lenslet element for one polarization state, showing the focused first-order light and the unfocused higher diffraction orders, and (b) micromirrors (the dark circles), reflecting only first-diffraction-order light, permitting higher-diffraction-order light to exit the system.

Fig. 9
Fig. 9

Output signals for a single folded DBS (2 × 2 switch) with two input signals: a dc signal and a 20-kHz signal. The switch is reconfiguring at a 1-kHz rate, limited by the 100-μs characteristic rise time of the FLC. The measured average SNR is 57:1.

Fig. 10
Fig. 10

Output from a 4 × 4 switch with two input signals (A and B) routed to the four output channels by a host computer controller. The average SNR is 120:1, which is twice as great as that of the single DBS performance, highlighting the filtering capabilities of the folded MIN configuration.

Fig. 11
Fig. 11

CCD time-sequenced images showing a single input dc signal routing among eight output channels. The measured average SNR of 30:1 is derived from the CCD pixel values. This relatively low value might be due to the poor dynamic range and the background noise of the CCD device.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR   =   log 10 1 δ c - log 10   S ,

Metrics