Abstract

We present what to our knowledge is a new method for assessing the polarization optics of the cornea and lens, by examining the state of polarization of the first, second, and fourth Purkinje images. When linearly polarized light is incident on the cornea at 70° to the line of gaze along the horizontal meridian, and then traverses the cornea, or the cornea and the lens, the emergent light is elliptically polarized. The degree of ellipticity varies widely between subjects. The results indicate that both the cornea and the lens may be optically active and to our knowledge are the first to suggest that the cornea may exhibit circular birefringence.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. 136, 263–286 (1957).
    [PubMed]
  2. M. A. Jakus, “Further observations on the fine structure of the cornea,” Invest. Ophthalmol. Visual Sci. 1, 202–225 (1962).
  3. C. C. Teng, “Fine structure of the human cornea,” Am. J. Ophthal. 54, 969–1002 (1962).
  4. W. Schwarz, D. G. Keyserlingk, “Electron microscopy of normal and opaque human cornea,” in The Cornea. Macromolecular Organization of a Connective Tissue, M. E. Langham, ed. (Johns Hopkins U. Press, Baltimore, Md., 1967).
  5. C. C. D. Shute, “Haidinger’s brushes and predominant orientation of collagen in corneal stroma,” Nature 250, 163–164 (1974).
    [CrossRef] [PubMed]
  6. F. Veretout, M. Delaye, A. Tardieu, “Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of α-crystallin solutions,” J. Mol. Biol. 205, 713–728 (1989).
  7. D. Brewster, “On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarized light,” Philos. Trans. R. Soc. London Ser. B 106, 311–317 (1816).
    [CrossRef]
  8. D. C. Cogan, “Some ocular phenomena produced with polarized light,” Arch. Ophthalmol. 25, 391–400 (1941).
    [CrossRef]
  9. B. K. Pierscionek, “An explanation of isogyre formation in the eye lens,” Ophthalmic. Physiol. Opt. 13, 91–94 (1993).
    [CrossRef] [PubMed]
  10. B. K. Pierscionek, D. Y. C. Chan, “A mathematical description of isogyre formation in refracting structures,” Ophthalmic. Physiol. Opt. 13, 212–216 (1993).
    [CrossRef]
  11. W. N. Charman, “Explanation for the observation of isogyres in crystalline lenses viewed between crossed polarizers,” Ophthalmic. Physiol. Opt. 13, 209–211 (1993).
    [CrossRef] [PubMed]
  12. J. Lekner, “Isogyre formation by isotropic refracting bodies,” Ophthalmic. Physiol. Opt. 15, 69–72 (1995).
    [CrossRef] [PubMed]
  13. B. K. Pierscionek, R. A. Weale, “Is there a link between corneal structure and the ‘corneal cross?’” Eye 11, 361–364 (1997).
    [CrossRef]
  14. S. Mishima, “The use of polarized light in the biomicroscopy of the eye,” Adv. Ophthalmol. 10, 1–31 (1960).
  15. W. T. Cope, M. L. Wolbarsht, B. S. Yamanashi, “The corneal polarization cross,” J. Opt. Soc. Am. 68, 1139–1141 (1978).
    [CrossRef] [PubMed]
  16. F. A. Bettelheim, “On the optical anisotropy of lens fibre cells,” Exp. Eye Res. 21, 231–234 (1975).
    [CrossRef] [PubMed]
  17. R. A. Weale, “Sex, age and birefringence of the human crystalline lens,” Exp. Eye Res. 29, 449–461 (1979).
    [CrossRef] [PubMed]
  18. H. B. klein Brink, “Birefringence of the human crystalline lens in vivo,” J. Opt. Soc. Am. A 8, 1788–1793 (1991).
    [PubMed]
  19. A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950).
    [CrossRef] [PubMed]
  20. D. Post, G. E. Gurland, “Birefringence of the cat cornea,” Exp. Eye Res. 5, 286–295 (1966).
    [CrossRef] [PubMed]
  21. G. W. Nyquist, “Stress-induced birefringence of the cornea,” Am. J. Ophthalmol. 59, 398–404 (1968).
  22. F. A. Bettelheim, D. Kaplan, “Small angle light scattering of bovine cornea as affected by birefringence,” Biochem. Biophys. Acta 313, 268–276 (1973).
    [CrossRef] [PubMed]
  23. T. J. Y. Wang, F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. 51A, 89–94 (1975).
    [CrossRef]
  24. F. A. Bettelheim, M. Kumbar, “An interpretation of small-angle light scattering patterns of human cornea,” Invest. Ophthal. Vis. Sci. 16, 233–236 (1977).
  25. L. J. Bour, N. K. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
    [CrossRef] [PubMed]
  26. G. J. Van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
    [CrossRef] [PubMed]
  27. J. E. Purkinje, Commentatio de Examine Physiologico Organi Visus (Dr. W. Junk Publishers, The Hague, 1823) (reprinted 1937), pp. 27–30.
  28. E. F. Fincham, “The changes in the form of the crystalline lens in accommodation,”Trans. Ophthal. Soc. UK 26, 239–269 (1925).
    [CrossRef]
  29. F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
    [CrossRef] [PubMed]
  30. R. A. Weale, “The Oqual: a new device for measuring the optical quality of the anterior segment of the human eye,” Exp. Eye Res. 55, 597–510 (1992).
  31. W. A. Shurcliff, “Polarized light: production and use,” (Harvard U. Press, Cambridge, Mass., 1962), pp. 28, 102, 103.
  32. F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 337–357.
  33. F. A. Jenkins, H. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957), pp. 516–577.
  34. J. Lekner, Theory of Reflection (Nijhoff, Dordrecht, The Netherlands, 1987), p. 7.
  35. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), p. 707.
  36. J. Lekner, “Light in periodically stratified media,” J. Opt. Soc. Am. A. 11, 2892–2899 (1994).
    [CrossRef]
  37. D. M. Maurice, “The cornea and the sclera,” in The Eye, H. Davson, ed. (Academic, London, 1984), Vol. 1b, pp. 1–158.
    [CrossRef]
  38. D. M. Kirschenbaum, “Optical rotatory capacity of the lens of the vertebrate eye,” Nature 193, 392–393 (1962).
    [CrossRef] [PubMed]

1997 (1)

B. K. Pierscionek, R. A. Weale, “Is there a link between corneal structure and the ‘corneal cross?’” Eye 11, 361–364 (1997).
[CrossRef]

1995 (1)

J. Lekner, “Isogyre formation by isotropic refracting bodies,” Ophthalmic. Physiol. Opt. 15, 69–72 (1995).
[CrossRef] [PubMed]

1994 (1)

J. Lekner, “Light in periodically stratified media,” J. Opt. Soc. Am. A. 11, 2892–2899 (1994).
[CrossRef]

1993 (3)

B. K. Pierscionek, “An explanation of isogyre formation in the eye lens,” Ophthalmic. Physiol. Opt. 13, 91–94 (1993).
[CrossRef] [PubMed]

B. K. Pierscionek, D. Y. C. Chan, “A mathematical description of isogyre formation in refracting structures,” Ophthalmic. Physiol. Opt. 13, 212–216 (1993).
[CrossRef]

W. N. Charman, “Explanation for the observation of isogyres in crystalline lenses viewed between crossed polarizers,” Ophthalmic. Physiol. Opt. 13, 209–211 (1993).
[CrossRef] [PubMed]

1992 (1)

R. A. Weale, “The Oqual: a new device for measuring the optical quality of the anterior segment of the human eye,” Exp. Eye Res. 55, 597–510 (1992).

1991 (1)

1989 (1)

F. Veretout, M. Delaye, A. Tardieu, “Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of α-crystallin solutions,” J. Mol. Biol. 205, 713–728 (1989).

1987 (1)

1981 (1)

L. J. Bour, N. K. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
[CrossRef] [PubMed]

1979 (1)

R. A. Weale, “Sex, age and birefringence of the human crystalline lens,” Exp. Eye Res. 29, 449–461 (1979).
[CrossRef] [PubMed]

1978 (1)

1977 (1)

F. A. Bettelheim, M. Kumbar, “An interpretation of small-angle light scattering patterns of human cornea,” Invest. Ophthal. Vis. Sci. 16, 233–236 (1977).

1975 (2)

F. A. Bettelheim, “On the optical anisotropy of lens fibre cells,” Exp. Eye Res. 21, 231–234 (1975).
[CrossRef] [PubMed]

T. J. Y. Wang, F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. 51A, 89–94 (1975).
[CrossRef]

1974 (1)

C. C. D. Shute, “Haidinger’s brushes and predominant orientation of collagen in corneal stroma,” Nature 250, 163–164 (1974).
[CrossRef] [PubMed]

1973 (1)

F. A. Bettelheim, D. Kaplan, “Small angle light scattering of bovine cornea as affected by birefringence,” Biochem. Biophys. Acta 313, 268–276 (1973).
[CrossRef] [PubMed]

1968 (1)

G. W. Nyquist, “Stress-induced birefringence of the cornea,” Am. J. Ophthalmol. 59, 398–404 (1968).

1966 (1)

D. Post, G. E. Gurland, “Birefringence of the cat cornea,” Exp. Eye Res. 5, 286–295 (1966).
[CrossRef] [PubMed]

1962 (3)

M. A. Jakus, “Further observations on the fine structure of the cornea,” Invest. Ophthalmol. Visual Sci. 1, 202–225 (1962).

C. C. Teng, “Fine structure of the human cornea,” Am. J. Ophthal. 54, 969–1002 (1962).

D. M. Kirschenbaum, “Optical rotatory capacity of the lens of the vertebrate eye,” Nature 193, 392–393 (1962).
[CrossRef] [PubMed]

1960 (1)

S. Mishima, “The use of polarized light in the biomicroscopy of the eye,” Adv. Ophthalmol. 10, 1–31 (1960).

1959 (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

1957 (1)

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. 136, 263–286 (1957).
[PubMed]

1950 (1)

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950).
[CrossRef] [PubMed]

1941 (1)

D. C. Cogan, “Some ocular phenomena produced with polarized light,” Arch. Ophthalmol. 25, 391–400 (1941).
[CrossRef]

1925 (1)

E. F. Fincham, “The changes in the form of the crystalline lens in accommodation,”Trans. Ophthal. Soc. UK 26, 239–269 (1925).
[CrossRef]

1816 (1)

D. Brewster, “On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarized light,” Philos. Trans. R. Soc. London Ser. B 106, 311–317 (1816).
[CrossRef]

Bettelheim, F. A.

F. A. Bettelheim, M. Kumbar, “An interpretation of small-angle light scattering patterns of human cornea,” Invest. Ophthal. Vis. Sci. 16, 233–236 (1977).

F. A. Bettelheim, “On the optical anisotropy of lens fibre cells,” Exp. Eye Res. 21, 231–234 (1975).
[CrossRef] [PubMed]

T. J. Y. Wang, F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. 51A, 89–94 (1975).
[CrossRef]

F. A. Bettelheim, D. Kaplan, “Small angle light scattering of bovine cornea as affected by birefringence,” Biochem. Biophys. Acta 313, 268–276 (1973).
[CrossRef] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), p. 707.

Bour, L. J.

L. J. Bour, N. K. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
[CrossRef] [PubMed]

Brewster, D.

D. Brewster, “On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarized light,” Philos. Trans. R. Soc. London Ser. B 106, 311–317 (1816).
[CrossRef]

Brink, H. B. klein

Chan, D. Y. C.

B. K. Pierscionek, D. Y. C. Chan, “A mathematical description of isogyre formation in refracting structures,” Ophthalmic. Physiol. Opt. 13, 212–216 (1993).
[CrossRef]

Charman, W. N.

W. N. Charman, “Explanation for the observation of isogyres in crystalline lenses viewed between crossed polarizers,” Ophthalmic. Physiol. Opt. 13, 209–211 (1993).
[CrossRef] [PubMed]

Cogan, D. C.

D. C. Cogan, “Some ocular phenomena produced with polarized light,” Arch. Ophthalmol. 25, 391–400 (1941).
[CrossRef]

Cope, W. T.

Delaye, M.

F. Veretout, M. Delaye, A. Tardieu, “Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of α-crystallin solutions,” J. Mol. Biol. 205, 713–728 (1989).

Fincham, E. F.

E. F. Fincham, “The changes in the form of the crystalline lens in accommodation,”Trans. Ophthal. Soc. UK 26, 239–269 (1925).
[CrossRef]

Gurland, G. E.

D. Post, G. E. Gurland, “Birefringence of the cat cornea,” Exp. Eye Res. 5, 286–295 (1966).
[CrossRef] [PubMed]

Jakus, M. A.

M. A. Jakus, “Further observations on the fine structure of the cornea,” Invest. Ophthalmol. Visual Sci. 1, 202–225 (1962).

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957), pp. 516–577.

Kaplan, D.

F. A. Bettelheim, D. Kaplan, “Small angle light scattering of bovine cornea as affected by birefringence,” Biochem. Biophys. Acta 313, 268–276 (1973).
[CrossRef] [PubMed]

Keyserlingk, D. G.

W. Schwarz, D. G. Keyserlingk, “Electron microscopy of normal and opaque human cornea,” in The Cornea. Macromolecular Organization of a Connective Tissue, M. E. Langham, ed. (Johns Hopkins U. Press, Baltimore, Md., 1967).

Kirschenbaum, D. M.

D. M. Kirschenbaum, “Optical rotatory capacity of the lens of the vertebrate eye,” Nature 193, 392–393 (1962).
[CrossRef] [PubMed]

Kumbar, M.

F. A. Bettelheim, M. Kumbar, “An interpretation of small-angle light scattering patterns of human cornea,” Invest. Ophthal. Vis. Sci. 16, 233–236 (1977).

Lekner, J.

J. Lekner, “Isogyre formation by isotropic refracting bodies,” Ophthalmic. Physiol. Opt. 15, 69–72 (1995).
[CrossRef] [PubMed]

J. Lekner, “Light in periodically stratified media,” J. Opt. Soc. Am. A. 11, 2892–2899 (1994).
[CrossRef]

J. Lekner, Theory of Reflection (Nijhoff, Dordrecht, The Netherlands, 1987), p. 7.

Lopes Cardozo, N. K.

L. J. Bour, N. K. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
[CrossRef] [PubMed]

Maurice, D. M.

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. 136, 263–286 (1957).
[PubMed]

D. M. Maurice, “The cornea and the sclera,” in The Eye, H. Davson, ed. (Academic, London, 1984), Vol. 1b, pp. 1–158.
[CrossRef]

Mishima, S.

S. Mishima, “The use of polarized light in the biomicroscopy of the eye,” Adv. Ophthalmol. 10, 1–31 (1960).

Naylor, E. J.

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950).
[CrossRef] [PubMed]

Nyquist, G. W.

G. W. Nyquist, “Stress-induced birefringence of the cornea,” Am. J. Ophthalmol. 59, 398–404 (1968).

Pedrotti, F. L.

F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 337–357.

Pedrotti, L. S.

F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 337–357.

Pierscionek, B. K.

B. K. Pierscionek, R. A. Weale, “Is there a link between corneal structure and the ‘corneal cross?’” Eye 11, 361–364 (1997).
[CrossRef]

B. K. Pierscionek, D. Y. C. Chan, “A mathematical description of isogyre formation in refracting structures,” Ophthalmic. Physiol. Opt. 13, 212–216 (1993).
[CrossRef]

B. K. Pierscionek, “An explanation of isogyre formation in the eye lens,” Ophthalmic. Physiol. Opt. 13, 91–94 (1993).
[CrossRef] [PubMed]

Post, D.

D. Post, G. E. Gurland, “Birefringence of the cat cornea,” Exp. Eye Res. 5, 286–295 (1966).
[CrossRef] [PubMed]

Purkinje, J. E.

J. E. Purkinje, Commentatio de Examine Physiologico Organi Visus (Dr. W. Junk Publishers, The Hague, 1823) (reprinted 1937), pp. 27–30.

Said, F. S.

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Schwarz, W.

W. Schwarz, D. G. Keyserlingk, “Electron microscopy of normal and opaque human cornea,” in The Cornea. Macromolecular Organization of a Connective Tissue, M. E. Langham, ed. (Johns Hopkins U. Press, Baltimore, Md., 1967).

Shurcliff, W. A.

W. A. Shurcliff, “Polarized light: production and use,” (Harvard U. Press, Cambridge, Mass., 1962), pp. 28, 102, 103.

Shute, C. C. D.

C. C. D. Shute, “Haidinger’s brushes and predominant orientation of collagen in corneal stroma,” Nature 250, 163–164 (1974).
[CrossRef] [PubMed]

Stanworth, A.

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950).
[CrossRef] [PubMed]

Tardieu, A.

F. Veretout, M. Delaye, A. Tardieu, “Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of α-crystallin solutions,” J. Mol. Biol. 205, 713–728 (1989).

Teng, C. C.

C. C. Teng, “Fine structure of the human cornea,” Am. J. Ophthal. 54, 969–1002 (1962).

Van Blokland, G. J.

Veretout, F.

F. Veretout, M. Delaye, A. Tardieu, “Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of α-crystallin solutions,” J. Mol. Biol. 205, 713–728 (1989).

Verhelst, S. C.

Wang, T. J. Y.

T. J. Y. Wang, F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. 51A, 89–94 (1975).
[CrossRef]

Weale, R. A.

B. K. Pierscionek, R. A. Weale, “Is there a link between corneal structure and the ‘corneal cross?’” Eye 11, 361–364 (1997).
[CrossRef]

R. A. Weale, “The Oqual: a new device for measuring the optical quality of the anterior segment of the human eye,” Exp. Eye Res. 55, 597–510 (1992).

R. A. Weale, “Sex, age and birefringence of the human crystalline lens,” Exp. Eye Res. 29, 449–461 (1979).
[CrossRef] [PubMed]

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957), pp. 516–577.

Wolbarsht, M. L.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), p. 707.

Yamanashi, B. S.

Adv. Ophthalmol. (1)

S. Mishima, “The use of polarized light in the biomicroscopy of the eye,” Adv. Ophthalmol. 10, 1–31 (1960).

Am. J. Ophthal. (1)

C. C. Teng, “Fine structure of the human cornea,” Am. J. Ophthal. 54, 969–1002 (1962).

Am. J. Ophthalmol. (1)

G. W. Nyquist, “Stress-induced birefringence of the cornea,” Am. J. Ophthalmol. 59, 398–404 (1968).

Arch. Ophthalmol. (1)

D. C. Cogan, “Some ocular phenomena produced with polarized light,” Arch. Ophthalmol. 25, 391–400 (1941).
[CrossRef]

Biochem. Biophys. Acta (1)

F. A. Bettelheim, D. Kaplan, “Small angle light scattering of bovine cornea as affected by birefringence,” Biochem. Biophys. Acta 313, 268–276 (1973).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (1)

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950).
[CrossRef] [PubMed]

Comp. Biochem. Physiol. (1)

T. J. Y. Wang, F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. 51A, 89–94 (1975).
[CrossRef]

Exp. Eye Res. (4)

D. Post, G. E. Gurland, “Birefringence of the cat cornea,” Exp. Eye Res. 5, 286–295 (1966).
[CrossRef] [PubMed]

R. A. Weale, “The Oqual: a new device for measuring the optical quality of the anterior segment of the human eye,” Exp. Eye Res. 55, 597–510 (1992).

F. A. Bettelheim, “On the optical anisotropy of lens fibre cells,” Exp. Eye Res. 21, 231–234 (1975).
[CrossRef] [PubMed]

R. A. Weale, “Sex, age and birefringence of the human crystalline lens,” Exp. Eye Res. 29, 449–461 (1979).
[CrossRef] [PubMed]

Eye (1)

B. K. Pierscionek, R. A. Weale, “Is there a link between corneal structure and the ‘corneal cross?’” Eye 11, 361–364 (1997).
[CrossRef]

Gerontologia (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Invest. Ophthal. Vis. Sci. (1)

F. A. Bettelheim, M. Kumbar, “An interpretation of small-angle light scattering patterns of human cornea,” Invest. Ophthal. Vis. Sci. 16, 233–236 (1977).

Invest. Ophthalmol. Visual Sci. (1)

M. A. Jakus, “Further observations on the fine structure of the cornea,” Invest. Ophthalmol. Visual Sci. 1, 202–225 (1962).

J. Mol. Biol. (1)

F. Veretout, M. Delaye, A. Tardieu, “Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of α-crystallin solutions,” J. Mol. Biol. 205, 713–728 (1989).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. A. (1)

J. Lekner, “Light in periodically stratified media,” J. Opt. Soc. Am. A. 11, 2892–2899 (1994).
[CrossRef]

J. Physiol. (1)

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. 136, 263–286 (1957).
[PubMed]

Nature (2)

C. C. D. Shute, “Haidinger’s brushes and predominant orientation of collagen in corneal stroma,” Nature 250, 163–164 (1974).
[CrossRef] [PubMed]

D. M. Kirschenbaum, “Optical rotatory capacity of the lens of the vertebrate eye,” Nature 193, 392–393 (1962).
[CrossRef] [PubMed]

Ophthalmic. Physiol. Opt. (4)

B. K. Pierscionek, “An explanation of isogyre formation in the eye lens,” Ophthalmic. Physiol. Opt. 13, 91–94 (1993).
[CrossRef] [PubMed]

B. K. Pierscionek, D. Y. C. Chan, “A mathematical description of isogyre formation in refracting structures,” Ophthalmic. Physiol. Opt. 13, 212–216 (1993).
[CrossRef]

W. N. Charman, “Explanation for the observation of isogyres in crystalline lenses viewed between crossed polarizers,” Ophthalmic. Physiol. Opt. 13, 209–211 (1993).
[CrossRef] [PubMed]

J. Lekner, “Isogyre formation by isotropic refracting bodies,” Ophthalmic. Physiol. Opt. 15, 69–72 (1995).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London Ser. B (1)

D. Brewster, “On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarized light,” Philos. Trans. R. Soc. London Ser. B 106, 311–317 (1816).
[CrossRef]

Trans. Ophthal. Soc. UK (1)

E. F. Fincham, “The changes in the form of the crystalline lens in accommodation,”Trans. Ophthal. Soc. UK 26, 239–269 (1925).
[CrossRef]

Vision Res. (1)

L. J. Bour, N. K. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
[CrossRef] [PubMed]

Other (8)

J. E. Purkinje, Commentatio de Examine Physiologico Organi Visus (Dr. W. Junk Publishers, The Hague, 1823) (reprinted 1937), pp. 27–30.

W. Schwarz, D. G. Keyserlingk, “Electron microscopy of normal and opaque human cornea,” in The Cornea. Macromolecular Organization of a Connective Tissue, M. E. Langham, ed. (Johns Hopkins U. Press, Baltimore, Md., 1967).

W. A. Shurcliff, “Polarized light: production and use,” (Harvard U. Press, Cambridge, Mass., 1962), pp. 28, 102, 103.

F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 337–357.

F. A. Jenkins, H. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957), pp. 516–577.

J. Lekner, Theory of Reflection (Nijhoff, Dordrecht, The Netherlands, 1987), p. 7.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), p. 707.

D. M. Maurice, “The cornea and the sclera,” in The Eye, H. Davson, ed. (Academic, London, 1984), Vol. 1b, pp. 1–158.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram showing the formation of the first, third, and fourth Purkinje images. The angles are not to scale but serve to show quantitatively that the bundle of rays from the fourth image traverse the cornea at almost perpendicular incidence.

Fig. 2
Fig. 2

Schematic diagram showing the experimental arrangement: f, green filter; p, polarizer (with its axis horizontal); k, triangular aperture; m, coverslip reflecting light from penlight F (not shown); S, microscope arm of slit lamp; a, analyzer; q, quartz-wave plate; E, eyepiece; 1, first Purkinje image; 2, second; and 3 third. For details see text.

Fig. 3
Fig. 3

rot P2 and rot P4 plotted against rot P1, where rot P1, rot P2, and rot P4 are rotations (in deg) of the axis of polarization, from the direction of polarization of the incident light, of the image-forming rays from P1, P2, and P4, respectively. (Positive rotations are in the clockwise direction.)

Fig. 4
Fig. 4

rot P2 plotted against rot P4, where rot P2 and rot P4 are rotations (in deg) of the axis of polarization, from the direction of polarization of the incident light, of the image-forming rays from P2 and P4, respectively. (Positive rotations are in the clockwise direction.)

Tables (1)

Tables Icon

Table 1 Extinction Positions of the Analyzer in the Form of Rotations of Analyzer Axis from the Vibration Direction of the Incident Lighta

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

cos   α sin   α = exp i π / 4 1 0 0 - i   a b ,
a b = 1 / - i   exp i π / 4 - i 0 0 1   cos   α sin   α .
exp - i π / 4 cos   α i   sin   α .
= tan 0.5   arcsin sin   2 R | sin   γ | ,
R = | arctan V / H | ,
V = sin   α ,
H = cos   α ,
= V / H = tan   α = tan rot   P 2
t 1 / cos   31.6 ° - 1 / cos   7 ° ,

Metrics