Abstract

The application of shape memory alloy (SMA) thin films in optical devices is introduced and explored for the first time. Physical and optical properties of titanium–nickel (TiNi) SMA thin films change as these films undergo phase transformation on heating. An optical beam can be modulated either mechanically with a TiNi actuator or by the changes that occur in TiNi’s optical properties upon heating and phase transformation. Reflection coefficients of TiNi films were measured in their so-called martensitic (room-temperature) and austenitic (elevated-temperature) phases. The reflection coefficients of the austenitic phase were higher than those of the martensitic phase by more than 45% in the wavelength range between 550 and 850 nm. Also, a microfabricated TiNi diaphragm with a 0.26-mm-diameter hole was used as a prototype light valve. The intensity of the transmitted light through the hole was reduced by 10%–17% when the diaphragm was heated. A novel TiNi light valve fabricated by using silicon micromachining techniques is also proposed and discussed. We present both optical data and structural data obtained by using transmission electron microscopies.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription