Abstract

The application of shape memory alloy (SMA) thin films in optical devices is introduced and explored for the first time. Physical and optical properties of titanium–nickel (TiNi) SMA thin films change as these films undergo phase transformation on heating. An optical beam can be modulated either mechanically with a TiNi actuator or by the changes that occur in TiNi’s optical properties upon heating and phase transformation. Reflection coefficients of TiNi films were measured in their so-called martensitic (room-temperature) and austenitic (elevated-temperature) phases. The reflection coefficients of the austenitic phase were higher than those of the martensitic phase by more than 45% in the wavelength range between 550 and 850 nm. Also, a microfabricated TiNi diaphragm with a 0.26-mm-diameter hole was used as a prototype light valve. The intensity of the transmitted light through the hole was reduced by 10%–17% when the diaphragm was heated. A novel TiNi light valve fabricated by using silicon micromachining techniques is also proposed and discussed. We present both optical data and structural data obtained by using transmission electron microscopies.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tabib-Azar, Microactuators (Kluwer Academic, Boston, 1997).
  2. J. D. Bush, A. D. Johnson, C. H. Lee, D. A. Stevenson, “Shape-memory properties in Ni–Ti sputter-deposited film,” J. Appl. Phys. 68, 6224–6228 (1990).
    [Crossref]
  3. R. Wolf, A. H. Heuer, “TiNi (shape memory) films on silicon for MEMS applications,” J. Microelectromech. Syst. 4, 206–212 (1995).
    [Crossref]
  4. K. Ikuta, H. Fujishiro, M. Hayashi, T. Matsuura, “Laser ablation of Ni–Ti shape memory alloy thin film,” in Proceedings of the First International Conference on Shape Memory and Superelastic Technologies, A. R. Pelton, D. Hodgson, T. Duerig, eds. (Shape Memory and Superelastic Technologies International Committee, Pacific Grove, Calif., 1995), pp. 13–18.
  5. W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff, “A titanium–nickel shape memory alloy actuated micropump,” in Proceedings of the IEEE International Conference on Solid-State Sensors and Actuators (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 361–365.
    [Crossref]
  6. J. D. Johnson, E. J. Shahoian, “Recent progress in thin film shape memory microactuators,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 216–220.
  7. H. Kahn, W. L. Benard, M. A. Huff, A. H. Heuer, “Titanium–nickel shape memory thin film actuators for micromachined valves,” MRS Symp. Proc. 444, 227–232 (1997).
  8. K. D. Skrobanek, M. Kohl, S. Miyazaki, “Stress-optimized shape memory microvalves,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 256–261.
  9. A. B. Lee, D. R. Ciarlo, P. A. Krulevitch, S. C. Lehew, J. T. Trevino, M. A. Northrup, “A practical microgripper by fine alignment, eutectic bonding and SMA actuation,” Sens. Actuators A 54, 755–759 (1996).
    [Crossref]
  10. J. C. Dainty, “The opposition effect in volume and surface scattering,” in International Trends in Optics, J. W. Goodman, ed. (Academic, San Diego, 1991), pp. 207–219.
    [Crossref]
  11. L. J. Hornbeck, “Characteristics of the deformable mirror device for optical information processing,” Opt. Eng. 22, 675–681 (1983).
  12. O. Solgaard, F. S. A. Sandejas, D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17, 688–690 (1992).
    [Crossref] [PubMed]

1997 (1)

H. Kahn, W. L. Benard, M. A. Huff, A. H. Heuer, “Titanium–nickel shape memory thin film actuators for micromachined valves,” MRS Symp. Proc. 444, 227–232 (1997).

1996 (1)

A. B. Lee, D. R. Ciarlo, P. A. Krulevitch, S. C. Lehew, J. T. Trevino, M. A. Northrup, “A practical microgripper by fine alignment, eutectic bonding and SMA actuation,” Sens. Actuators A 54, 755–759 (1996).
[Crossref]

1995 (1)

R. Wolf, A. H. Heuer, “TiNi (shape memory) films on silicon for MEMS applications,” J. Microelectromech. Syst. 4, 206–212 (1995).
[Crossref]

1992 (1)

1990 (1)

J. D. Bush, A. D. Johnson, C. H. Lee, D. A. Stevenson, “Shape-memory properties in Ni–Ti sputter-deposited film,” J. Appl. Phys. 68, 6224–6228 (1990).
[Crossref]

1983 (1)

L. J. Hornbeck, “Characteristics of the deformable mirror device for optical information processing,” Opt. Eng. 22, 675–681 (1983).

Benard, W. L.

H. Kahn, W. L. Benard, M. A. Huff, A. H. Heuer, “Titanium–nickel shape memory thin film actuators for micromachined valves,” MRS Symp. Proc. 444, 227–232 (1997).

W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff, “A titanium–nickel shape memory alloy actuated micropump,” in Proceedings of the IEEE International Conference on Solid-State Sensors and Actuators (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 361–365.
[Crossref]

Bloom, D. M.

Bush, J. D.

J. D. Bush, A. D. Johnson, C. H. Lee, D. A. Stevenson, “Shape-memory properties in Ni–Ti sputter-deposited film,” J. Appl. Phys. 68, 6224–6228 (1990).
[Crossref]

Ciarlo, D. R.

A. B. Lee, D. R. Ciarlo, P. A. Krulevitch, S. C. Lehew, J. T. Trevino, M. A. Northrup, “A practical microgripper by fine alignment, eutectic bonding and SMA actuation,” Sens. Actuators A 54, 755–759 (1996).
[Crossref]

Dainty, J. C.

J. C. Dainty, “The opposition effect in volume and surface scattering,” in International Trends in Optics, J. W. Goodman, ed. (Academic, San Diego, 1991), pp. 207–219.
[Crossref]

Fujishiro, H.

K. Ikuta, H. Fujishiro, M. Hayashi, T. Matsuura, “Laser ablation of Ni–Ti shape memory alloy thin film,” in Proceedings of the First International Conference on Shape Memory and Superelastic Technologies, A. R. Pelton, D. Hodgson, T. Duerig, eds. (Shape Memory and Superelastic Technologies International Committee, Pacific Grove, Calif., 1995), pp. 13–18.

Hayashi, M.

K. Ikuta, H. Fujishiro, M. Hayashi, T. Matsuura, “Laser ablation of Ni–Ti shape memory alloy thin film,” in Proceedings of the First International Conference on Shape Memory and Superelastic Technologies, A. R. Pelton, D. Hodgson, T. Duerig, eds. (Shape Memory and Superelastic Technologies International Committee, Pacific Grove, Calif., 1995), pp. 13–18.

Heuer, A. H.

H. Kahn, W. L. Benard, M. A. Huff, A. H. Heuer, “Titanium–nickel shape memory thin film actuators for micromachined valves,” MRS Symp. Proc. 444, 227–232 (1997).

R. Wolf, A. H. Heuer, “TiNi (shape memory) films on silicon for MEMS applications,” J. Microelectromech. Syst. 4, 206–212 (1995).
[Crossref]

W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff, “A titanium–nickel shape memory alloy actuated micropump,” in Proceedings of the IEEE International Conference on Solid-State Sensors and Actuators (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 361–365.
[Crossref]

Hornbeck, L. J.

L. J. Hornbeck, “Characteristics of the deformable mirror device for optical information processing,” Opt. Eng. 22, 675–681 (1983).

Huff, M. A.

H. Kahn, W. L. Benard, M. A. Huff, A. H. Heuer, “Titanium–nickel shape memory thin film actuators for micromachined valves,” MRS Symp. Proc. 444, 227–232 (1997).

W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff, “A titanium–nickel shape memory alloy actuated micropump,” in Proceedings of the IEEE International Conference on Solid-State Sensors and Actuators (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 361–365.
[Crossref]

Ikuta, K.

K. Ikuta, H. Fujishiro, M. Hayashi, T. Matsuura, “Laser ablation of Ni–Ti shape memory alloy thin film,” in Proceedings of the First International Conference on Shape Memory and Superelastic Technologies, A. R. Pelton, D. Hodgson, T. Duerig, eds. (Shape Memory and Superelastic Technologies International Committee, Pacific Grove, Calif., 1995), pp. 13–18.

Johnson, A. D.

J. D. Bush, A. D. Johnson, C. H. Lee, D. A. Stevenson, “Shape-memory properties in Ni–Ti sputter-deposited film,” J. Appl. Phys. 68, 6224–6228 (1990).
[Crossref]

Johnson, J. D.

J. D. Johnson, E. J. Shahoian, “Recent progress in thin film shape memory microactuators,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 216–220.

Kahn, H.

H. Kahn, W. L. Benard, M. A. Huff, A. H. Heuer, “Titanium–nickel shape memory thin film actuators for micromachined valves,” MRS Symp. Proc. 444, 227–232 (1997).

W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff, “A titanium–nickel shape memory alloy actuated micropump,” in Proceedings of the IEEE International Conference on Solid-State Sensors and Actuators (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 361–365.
[Crossref]

Kohl, M.

K. D. Skrobanek, M. Kohl, S. Miyazaki, “Stress-optimized shape memory microvalves,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 256–261.

Krulevitch, P. A.

A. B. Lee, D. R. Ciarlo, P. A. Krulevitch, S. C. Lehew, J. T. Trevino, M. A. Northrup, “A practical microgripper by fine alignment, eutectic bonding and SMA actuation,” Sens. Actuators A 54, 755–759 (1996).
[Crossref]

Lee, A. B.

A. B. Lee, D. R. Ciarlo, P. A. Krulevitch, S. C. Lehew, J. T. Trevino, M. A. Northrup, “A practical microgripper by fine alignment, eutectic bonding and SMA actuation,” Sens. Actuators A 54, 755–759 (1996).
[Crossref]

Lee, C. H.

J. D. Bush, A. D. Johnson, C. H. Lee, D. A. Stevenson, “Shape-memory properties in Ni–Ti sputter-deposited film,” J. Appl. Phys. 68, 6224–6228 (1990).
[Crossref]

Lehew, S. C.

A. B. Lee, D. R. Ciarlo, P. A. Krulevitch, S. C. Lehew, J. T. Trevino, M. A. Northrup, “A practical microgripper by fine alignment, eutectic bonding and SMA actuation,” Sens. Actuators A 54, 755–759 (1996).
[Crossref]

Matsuura, T.

K. Ikuta, H. Fujishiro, M. Hayashi, T. Matsuura, “Laser ablation of Ni–Ti shape memory alloy thin film,” in Proceedings of the First International Conference on Shape Memory and Superelastic Technologies, A. R. Pelton, D. Hodgson, T. Duerig, eds. (Shape Memory and Superelastic Technologies International Committee, Pacific Grove, Calif., 1995), pp. 13–18.

Miyazaki, S.

K. D. Skrobanek, M. Kohl, S. Miyazaki, “Stress-optimized shape memory microvalves,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 256–261.

Northrup, M. A.

A. B. Lee, D. R. Ciarlo, P. A. Krulevitch, S. C. Lehew, J. T. Trevino, M. A. Northrup, “A practical microgripper by fine alignment, eutectic bonding and SMA actuation,” Sens. Actuators A 54, 755–759 (1996).
[Crossref]

Sandejas, F. S. A.

Shahoian, E. J.

J. D. Johnson, E. J. Shahoian, “Recent progress in thin film shape memory microactuators,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 216–220.

Skrobanek, K. D.

K. D. Skrobanek, M. Kohl, S. Miyazaki, “Stress-optimized shape memory microvalves,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 256–261.

Solgaard, O.

Stevenson, D. A.

J. D. Bush, A. D. Johnson, C. H. Lee, D. A. Stevenson, “Shape-memory properties in Ni–Ti sputter-deposited film,” J. Appl. Phys. 68, 6224–6228 (1990).
[Crossref]

Tabib-Azar, M.

M. Tabib-Azar, Microactuators (Kluwer Academic, Boston, 1997).

Trevino, J. T.

A. B. Lee, D. R. Ciarlo, P. A. Krulevitch, S. C. Lehew, J. T. Trevino, M. A. Northrup, “A practical microgripper by fine alignment, eutectic bonding and SMA actuation,” Sens. Actuators A 54, 755–759 (1996).
[Crossref]

Wolf, R.

R. Wolf, A. H. Heuer, “TiNi (shape memory) films on silicon for MEMS applications,” J. Microelectromech. Syst. 4, 206–212 (1995).
[Crossref]

J. Appl. Phys. (1)

J. D. Bush, A. D. Johnson, C. H. Lee, D. A. Stevenson, “Shape-memory properties in Ni–Ti sputter-deposited film,” J. Appl. Phys. 68, 6224–6228 (1990).
[Crossref]

J. Microelectromech. Syst. (1)

R. Wolf, A. H. Heuer, “TiNi (shape memory) films on silicon for MEMS applications,” J. Microelectromech. Syst. 4, 206–212 (1995).
[Crossref]

MRS Symp. Proc. (1)

H. Kahn, W. L. Benard, M. A. Huff, A. H. Heuer, “Titanium–nickel shape memory thin film actuators for micromachined valves,” MRS Symp. Proc. 444, 227–232 (1997).

Opt. Eng. (1)

L. J. Hornbeck, “Characteristics of the deformable mirror device for optical information processing,” Opt. Eng. 22, 675–681 (1983).

Opt. Lett. (1)

Sens. Actuators A (1)

A. B. Lee, D. R. Ciarlo, P. A. Krulevitch, S. C. Lehew, J. T. Trevino, M. A. Northrup, “A practical microgripper by fine alignment, eutectic bonding and SMA actuation,” Sens. Actuators A 54, 755–759 (1996).
[Crossref]

Other (6)

J. C. Dainty, “The opposition effect in volume and surface scattering,” in International Trends in Optics, J. W. Goodman, ed. (Academic, San Diego, 1991), pp. 207–219.
[Crossref]

K. D. Skrobanek, M. Kohl, S. Miyazaki, “Stress-optimized shape memory microvalves,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 256–261.

K. Ikuta, H. Fujishiro, M. Hayashi, T. Matsuura, “Laser ablation of Ni–Ti shape memory alloy thin film,” in Proceedings of the First International Conference on Shape Memory and Superelastic Technologies, A. R. Pelton, D. Hodgson, T. Duerig, eds. (Shape Memory and Superelastic Technologies International Committee, Pacific Grove, Calif., 1995), pp. 13–18.

W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff, “A titanium–nickel shape memory alloy actuated micropump,” in Proceedings of the IEEE International Conference on Solid-State Sensors and Actuators (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 361–365.
[Crossref]

J. D. Johnson, E. J. Shahoian, “Recent progress in thin film shape memory microactuators,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 216–220.

M. Tabib-Azar, Microactuators (Kluwer Academic, Boston, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

TEM micrographs of the (a) austenitic and (b) martensitic phases of a TiNi film.

Fig. 2
Fig. 2

Experimental setup used to measure the reflection spectrum of the TiNi film. Light from a monochromator was focused into the input port (1) of the coupler. TiNi samples were put in front of either port 1 or 2. Reflected light, which includes reflections from the coupler and the TiNi sample, was collected from port 2. DAS, data acquisition system.

Fig. 3
Fig. 3

Reflection outputs as a function of wavelength at 22.0 °C and 40.6 °C [curves (b) and (c), respectively]. The solid curve (a) shows the background output from a 3-dB coupler alone at 22.0 °C. The measuring fiber tip was almost touching the TiNi sample. Note that curves (b) and (c) contain the background signal as well.

Fig. 4
Fig. 4

Normalized reflection output spectra for martensitic and austenitic TiNi.

Fig. 5
Fig. 5

Reflection of an aluminum mirror and a martensitic TiNi as a function of distance (d) between the fiber-optic probe and the reflecting surface. d is shown in the inset.

Fig. 6
Fig. 6

Reflection coefficient at d = 0.05 (solid curve) and at d = 1.5 mm (dashed curve) detected as the TiNi film underwent the phase transformation. The reflection increased by 34% and 7% for d = 0.05 and 1.50 mm, respectively. (d is the distance between the fiber-optic probe and the TiNi surface as shown in the inset to Fig. 5.)

Fig. 7
Fig. 7

Optical reflection of a TiNi film as a function of temperature during a continuous cooling and heating cycle.

Fig. 8
Fig. 8

Outputs from the photodetector when the diaphragm is heated (closed) and unheated (open).

Fig. 9
Fig. 9

Normally closed microfabricated light valve: (a) off state (no heating power is supplied) and (b) on state (TiNi actuator is heated).

Metrics