Abstract

A high-resolution extreme-ultraviolet imaging spectrometer is designed for the Japanese solar mission Solar-B. A spherical varied-line-space (SVLS) grating and a toroidal uniform-line-space (TULS) grating are chosen as candidates for use in the spectrometer to yield high spectral and spatial resolution within the spectral range 25–29 nm. The spectral image-focusing properties and the mechanical tolerances for fabrication and alignment are compared for the two types of grating. The SVLS design is found to be superior to the TULS design for off-plane spectral images and in ease of fabrication and optical alignment.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Harada, S. Moriyama, T. Kita, “Mechanically ruled stigmatic concave grating,” Jpn. J. Appl. Phys. 14 Suppl. 14-1, 175–179 (1975).
  2. T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
    [CrossRef] [PubMed]
  3. T. Kita, T. Harada, “Mechanically ruled aberration-corrected concave grating for high resolution Seya–Namioka monochromator,” J. Spectrosc. Soc. Jpn. 29, 256–262 (1980).
    [CrossRef]
  4. T. Kita, T. Harada, “Use of aberration-corrected concave gratings in optical demultiplexers,” Appl. Opt. 22, 819–825 (1983).
    [CrossRef] [PubMed]
  5. T. Harada, T. Kita, M. Itou, H. Taira, A. Mikuni, “Mechanically ruled diffraction gratings for synchrotron radiation,” Nucl. Instrum. Methods A 246, 272–277 (1986).
    [CrossRef]
  6. M. Itou, T. Harada, T. Kita, “Soft x-ray monochromator with a varied-space plane grating for synchrotron radiation: design and evaluation,” Appl. Opt. 28, 146–153 (1989).
    [CrossRef] [PubMed]
  7. T. Kita, T. Harada, N. Nakano, H. Kuroda, “Mechanically ruled aberration corrected concave grating for a flat-field grazing incidence spectrograph,” Appl. Opt. 22, 512–513 (1983).
    [CrossRef] [PubMed]
  8. N. Nakano, H. Kuroda, T. Kita, T. Harada, “Development of a flat-field grazing incidence XUV spectrometer and its application in picosecond XUV spectroscopy,” Appl. Opt. 23, 2386–2392 (1984).
    [CrossRef] [PubMed]
  9. M. Hettrick, S. Bowyer, R. F. Malina, C. Martin, S. Mrowka, “Extreme Ultraviolet Explorer spectrometer,” Appl. Opt. 24, 1737–1756 (1985).
    [CrossRef] [PubMed]
  10. M. Hurwitz, S. Bowyer, “A high resolution spectrometer for EUV/FUV wavelength,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 375–378 (1988).
    [CrossRef]
  11. T. Harada, T. Kita, M. Hurwitz, S. Bowyer, “Design of spherical varied line-space gratings for a high resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, R. W. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
    [CrossRef]
  12. T. Kita, T. Harada, “Ruling engine using a piezoelectric device for large and high groove density gratings,” Appl. Opt. 31, 1399–1406 (1992).
    [CrossRef] [PubMed]
  13. M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
    [CrossRef]
  14. T. Onaka, “Aberration-corrected concave grating for the mid- infrared spectrometer aboard the Infrared Telescope in Space,” Appl. Opt. 34, 659–666 (1995).
    [CrossRef] [PubMed]
  15. M. C. E. Huber, J. G. Timothy, J. S. Morgan, G. Lemaitre, G. Tondello, E. Jannitti, P. Scarin, “Imaging extreme ultraviolet spectrometer employing a single toroidal diffraction grating: the initial evaluation,” Appl. Opt. 27, 3503–3510 (1988).
    [CrossRef] [PubMed]
  16. M. C. E. Huber, E. Jannitti, G. Lemaitre, G. Tondello, “Toroidal grating obtained on an elastic substrate,” Appl. Opt. 20, 2139–2142 (1981).
    [CrossRef] [PubMed]
  17. T. Watanabe, “XUV imaging spectrograph,” presented at the Solar-B Meetings, Sagamihara, Kanagawa, Japan, 5–8 July 1994.
  18. T. Harada, H. Sakuma, Y. Ikawa, T. Watanabe, T. Kita, “Design of high resolution XUV imaging spectrometer using spherical varied line-space grating,” in X-Ray and EUV/FUV Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2517, 107–115 (1995).
    [CrossRef]
  19. T. Namioka, “Theory of concave grating. I,” J. Opt. Soc. Am. 49, 446–460 (1959).
    [CrossRef]
  20. F. Masuda, H. Noda, T. Namioka, “Design and performance of toroidal holographic gratings,” J. Spectrosc. Soc. Jpn. 27, 322–333 (1978).
    [CrossRef]
  21. G. H. Spencer, M. V. R. K. Murty, “General ray-tracing procedure,” J. Opt. Soc. Am. 52, 672–678 (1962).
    [CrossRef]
  22. H. Noda, T. Namioka, M. Seya, “Ray tracing through holographic gratings,” J. Opt. Soc. Am. 64, 273–278 (1974).
    [CrossRef]

1998

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

1995

1992

1989

1988

1986

T. Harada, T. Kita, M. Itou, H. Taira, A. Mikuni, “Mechanically ruled diffraction gratings for synchrotron radiation,” Nucl. Instrum. Methods A 246, 272–277 (1986).
[CrossRef]

1985

1984

1983

1981

1980

T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
[CrossRef] [PubMed]

T. Kita, T. Harada, “Mechanically ruled aberration-corrected concave grating for high resolution Seya–Namioka monochromator,” J. Spectrosc. Soc. Jpn. 29, 256–262 (1980).
[CrossRef]

1978

F. Masuda, H. Noda, T. Namioka, “Design and performance of toroidal holographic gratings,” J. Spectrosc. Soc. Jpn. 27, 322–333 (1978).
[CrossRef]

1975

T. Harada, S. Moriyama, T. Kita, “Mechanically ruled stigmatic concave grating,” Jpn. J. Appl. Phys. 14 Suppl. 14-1, 175–179 (1975).

1974

H. Noda, T. Namioka, M. Seya, “Ray tracing through holographic gratings,” J. Opt. Soc. Am. 64, 273–278 (1974).
[CrossRef]

1962

1959

Bowyer, S.

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

M. Hettrick, S. Bowyer, R. F. Malina, C. Martin, S. Mrowka, “Extreme Ultraviolet Explorer spectrometer,” Appl. Opt. 24, 1737–1756 (1985).
[CrossRef] [PubMed]

M. Hurwitz, S. Bowyer, “A high resolution spectrometer for EUV/FUV wavelength,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 375–378 (1988).
[CrossRef]

T. Harada, T. Kita, M. Hurwitz, S. Bowyer, “Design of spherical varied line-space gratings for a high resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, R. W. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
[CrossRef]

Bristol, R.

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

Dixon, W. V. D.

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

Dupuis, J.

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

Edelstein, J.

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

Harada, T.

T. Kita, T. Harada, “Ruling engine using a piezoelectric device for large and high groove density gratings,” Appl. Opt. 31, 1399–1406 (1992).
[CrossRef] [PubMed]

M. Itou, T. Harada, T. Kita, “Soft x-ray monochromator with a varied-space plane grating for synchrotron radiation: design and evaluation,” Appl. Opt. 28, 146–153 (1989).
[CrossRef] [PubMed]

T. Harada, T. Kita, M. Itou, H. Taira, A. Mikuni, “Mechanically ruled diffraction gratings for synchrotron radiation,” Nucl. Instrum. Methods A 246, 272–277 (1986).
[CrossRef]

N. Nakano, H. Kuroda, T. Kita, T. Harada, “Development of a flat-field grazing incidence XUV spectrometer and its application in picosecond XUV spectroscopy,” Appl. Opt. 23, 2386–2392 (1984).
[CrossRef] [PubMed]

T. Kita, T. Harada, N. Nakano, H. Kuroda, “Mechanically ruled aberration corrected concave grating for a flat-field grazing incidence spectrograph,” Appl. Opt. 22, 512–513 (1983).
[CrossRef] [PubMed]

T. Kita, T. Harada, “Use of aberration-corrected concave gratings in optical demultiplexers,” Appl. Opt. 22, 819–825 (1983).
[CrossRef] [PubMed]

T. Kita, T. Harada, “Mechanically ruled aberration-corrected concave grating for high resolution Seya–Namioka monochromator,” J. Spectrosc. Soc. Jpn. 29, 256–262 (1980).
[CrossRef]

T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
[CrossRef] [PubMed]

T. Harada, S. Moriyama, T. Kita, “Mechanically ruled stigmatic concave grating,” Jpn. J. Appl. Phys. 14 Suppl. 14-1, 175–179 (1975).

T. Harada, T. Kita, M. Hurwitz, S. Bowyer, “Design of spherical varied line-space gratings for a high resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, R. W. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
[CrossRef]

T. Harada, H. Sakuma, Y. Ikawa, T. Watanabe, T. Kita, “Design of high resolution XUV imaging spectrometer using spherical varied line-space grating,” in X-Ray and EUV/FUV Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2517, 107–115 (1995).
[CrossRef]

Hettrick, M.

Huber, M. C. E.

Hurwitz, M.

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

M. Hurwitz, S. Bowyer, “A high resolution spectrometer for EUV/FUV wavelength,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 375–378 (1988).
[CrossRef]

T. Harada, T. Kita, M. Hurwitz, S. Bowyer, “Design of spherical varied line-space gratings for a high resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, R. W. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
[CrossRef]

Ikawa, Y.

T. Harada, H. Sakuma, Y. Ikawa, T. Watanabe, T. Kita, “Design of high resolution XUV imaging spectrometer using spherical varied line-space grating,” in X-Ray and EUV/FUV Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2517, 107–115 (1995).
[CrossRef]

Itou, M.

M. Itou, T. Harada, T. Kita, “Soft x-ray monochromator with a varied-space plane grating for synchrotron radiation: design and evaluation,” Appl. Opt. 28, 146–153 (1989).
[CrossRef] [PubMed]

T. Harada, T. Kita, M. Itou, H. Taira, A. Mikuni, “Mechanically ruled diffraction gratings for synchrotron radiation,” Nucl. Instrum. Methods A 246, 272–277 (1986).
[CrossRef]

Jannitti, E.

Jelinsky, P.

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

Kita, T.

T. Kita, T. Harada, “Ruling engine using a piezoelectric device for large and high groove density gratings,” Appl. Opt. 31, 1399–1406 (1992).
[CrossRef] [PubMed]

M. Itou, T. Harada, T. Kita, “Soft x-ray monochromator with a varied-space plane grating for synchrotron radiation: design and evaluation,” Appl. Opt. 28, 146–153 (1989).
[CrossRef] [PubMed]

T. Harada, T. Kita, M. Itou, H. Taira, A. Mikuni, “Mechanically ruled diffraction gratings for synchrotron radiation,” Nucl. Instrum. Methods A 246, 272–277 (1986).
[CrossRef]

N. Nakano, H. Kuroda, T. Kita, T. Harada, “Development of a flat-field grazing incidence XUV spectrometer and its application in picosecond XUV spectroscopy,” Appl. Opt. 23, 2386–2392 (1984).
[CrossRef] [PubMed]

T. Kita, T. Harada, N. Nakano, H. Kuroda, “Mechanically ruled aberration corrected concave grating for a flat-field grazing incidence spectrograph,” Appl. Opt. 22, 512–513 (1983).
[CrossRef] [PubMed]

T. Kita, T. Harada, “Use of aberration-corrected concave gratings in optical demultiplexers,” Appl. Opt. 22, 819–825 (1983).
[CrossRef] [PubMed]

T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
[CrossRef] [PubMed]

T. Kita, T. Harada, “Mechanically ruled aberration-corrected concave grating for high resolution Seya–Namioka monochromator,” J. Spectrosc. Soc. Jpn. 29, 256–262 (1980).
[CrossRef]

T. Harada, S. Moriyama, T. Kita, “Mechanically ruled stigmatic concave grating,” Jpn. J. Appl. Phys. 14 Suppl. 14-1, 175–179 (1975).

T. Harada, T. Kita, M. Hurwitz, S. Bowyer, “Design of spherical varied line-space gratings for a high resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, R. W. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
[CrossRef]

T. Harada, H. Sakuma, Y. Ikawa, T. Watanabe, T. Kita, “Design of high resolution XUV imaging spectrometer using spherical varied line-space grating,” in X-Ray and EUV/FUV Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2517, 107–115 (1995).
[CrossRef]

Kuroda, H.

Lemaitre, G.

Malina, R. F.

Martin, C.

Masuda, F.

F. Masuda, H. Noda, T. Namioka, “Design and performance of toroidal holographic gratings,” J. Spectrosc. Soc. Jpn. 27, 322–333 (1978).
[CrossRef]

Mikuni, A.

T. Harada, T. Kita, M. Itou, H. Taira, A. Mikuni, “Mechanically ruled diffraction gratings for synchrotron radiation,” Nucl. Instrum. Methods A 246, 272–277 (1986).
[CrossRef]

Morgan, J. S.

Moriyama, S.

T. Harada, S. Moriyama, T. Kita, “Mechanically ruled stigmatic concave grating,” Jpn. J. Appl. Phys. 14 Suppl. 14-1, 175–179 (1975).

Mrowka, S.

Murty, M. V. R. K.

Nakano, N.

Namioka, T.

F. Masuda, H. Noda, T. Namioka, “Design and performance of toroidal holographic gratings,” J. Spectrosc. Soc. Jpn. 27, 322–333 (1978).
[CrossRef]

H. Noda, T. Namioka, M. Seya, “Ray tracing through holographic gratings,” J. Opt. Soc. Am. 64, 273–278 (1974).
[CrossRef]

T. Namioka, “Theory of concave grating. I,” J. Opt. Soc. Am. 49, 446–460 (1959).
[CrossRef]

Noda, H.

F. Masuda, H. Noda, T. Namioka, “Design and performance of toroidal holographic gratings,” J. Spectrosc. Soc. Jpn. 27, 322–333 (1978).
[CrossRef]

H. Noda, T. Namioka, M. Seya, “Ray tracing through holographic gratings,” J. Opt. Soc. Am. 64, 273–278 (1974).
[CrossRef]

Onaka, T.

Sakuma, H.

T. Harada, H. Sakuma, Y. Ikawa, T. Watanabe, T. Kita, “Design of high resolution XUV imaging spectrometer using spherical varied line-space grating,” in X-Ray and EUV/FUV Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2517, 107–115 (1995).
[CrossRef]

Sasseen, T. P.

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

Scarin, P.

Seya, M.

H. Noda, T. Namioka, M. Seya, “Ray tracing through holographic gratings,” J. Opt. Soc. Am. 64, 273–278 (1974).
[CrossRef]

Siegmund, O.

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

Spencer, G. H.

Taira, H.

T. Harada, T. Kita, M. Itou, H. Taira, A. Mikuni, “Mechanically ruled diffraction gratings for synchrotron radiation,” Nucl. Instrum. Methods A 246, 272–277 (1986).
[CrossRef]

Timothy, J. G.

Tondello, G.

Watanabe, T.

T. Watanabe, “XUV imaging spectrograph,” presented at the Solar-B Meetings, Sagamihara, Kanagawa, Japan, 5–8 July 1994.

T. Harada, H. Sakuma, Y. Ikawa, T. Watanabe, T. Kita, “Design of high resolution XUV imaging spectrometer using spherical varied line-space grating,” in X-Ray and EUV/FUV Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2517, 107–115 (1995).
[CrossRef]

Appl. Opt.

T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
[CrossRef] [PubMed]

T. Kita, T. Harada, “Use of aberration-corrected concave gratings in optical demultiplexers,” Appl. Opt. 22, 819–825 (1983).
[CrossRef] [PubMed]

M. Itou, T. Harada, T. Kita, “Soft x-ray monochromator with a varied-space plane grating for synchrotron radiation: design and evaluation,” Appl. Opt. 28, 146–153 (1989).
[CrossRef] [PubMed]

T. Kita, T. Harada, N. Nakano, H. Kuroda, “Mechanically ruled aberration corrected concave grating for a flat-field grazing incidence spectrograph,” Appl. Opt. 22, 512–513 (1983).
[CrossRef] [PubMed]

N. Nakano, H. Kuroda, T. Kita, T. Harada, “Development of a flat-field grazing incidence XUV spectrometer and its application in picosecond XUV spectroscopy,” Appl. Opt. 23, 2386–2392 (1984).
[CrossRef] [PubMed]

M. Hettrick, S. Bowyer, R. F. Malina, C. Martin, S. Mrowka, “Extreme Ultraviolet Explorer spectrometer,” Appl. Opt. 24, 1737–1756 (1985).
[CrossRef] [PubMed]

T. Onaka, “Aberration-corrected concave grating for the mid- infrared spectrometer aboard the Infrared Telescope in Space,” Appl. Opt. 34, 659–666 (1995).
[CrossRef] [PubMed]

M. C. E. Huber, J. G. Timothy, J. S. Morgan, G. Lemaitre, G. Tondello, E. Jannitti, P. Scarin, “Imaging extreme ultraviolet spectrometer employing a single toroidal diffraction grating: the initial evaluation,” Appl. Opt. 27, 3503–3510 (1988).
[CrossRef] [PubMed]

M. C. E. Huber, E. Jannitti, G. Lemaitre, G. Tondello, “Toroidal grating obtained on an elastic substrate,” Appl. Opt. 20, 2139–2142 (1981).
[CrossRef] [PubMed]

T. Kita, T. Harada, “Ruling engine using a piezoelectric device for large and high groove density gratings,” Appl. Opt. 31, 1399–1406 (1992).
[CrossRef] [PubMed]

Astrophys. J. Lett.

M. Hurwitz, S. Bowyer, R. Bristol, W. V. D. Dixon, J. Dupuis, J. Edelstein, P. Jelinsky, T. P. Sasseen, O. Siegmund, “Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission,” Astrophys. J. Lett. 500, L1–L8 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Spectrosc. Soc. Jpn.

F. Masuda, H. Noda, T. Namioka, “Design and performance of toroidal holographic gratings,” J. Spectrosc. Soc. Jpn. 27, 322–333 (1978).
[CrossRef]

T. Kita, T. Harada, “Mechanically ruled aberration-corrected concave grating for high resolution Seya–Namioka monochromator,” J. Spectrosc. Soc. Jpn. 29, 256–262 (1980).
[CrossRef]

Jpn. J. Appl. Phys.

T. Harada, S. Moriyama, T. Kita, “Mechanically ruled stigmatic concave grating,” Jpn. J. Appl. Phys. 14 Suppl. 14-1, 175–179 (1975).

Nucl. Instrum. Methods A

T. Harada, T. Kita, M. Itou, H. Taira, A. Mikuni, “Mechanically ruled diffraction gratings for synchrotron radiation,” Nucl. Instrum. Methods A 246, 272–277 (1986).
[CrossRef]

Other

M. Hurwitz, S. Bowyer, “A high resolution spectrometer for EUV/FUV wavelength,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 375–378 (1988).
[CrossRef]

T. Harada, T. Kita, M. Hurwitz, S. Bowyer, “Design of spherical varied line-space gratings for a high resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, R. W. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
[CrossRef]

T. Watanabe, “XUV imaging spectrograph,” presented at the Solar-B Meetings, Sagamihara, Kanagawa, Japan, 5–8 July 1994.

T. Harada, H. Sakuma, Y. Ikawa, T. Watanabe, T. Kita, “Design of high resolution XUV imaging spectrometer using spherical varied line-space grating,” in X-Ray and EUV/FUV Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2517, 107–115 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

XUV imaging spectrometer for the Solar-B mission. The bandpass of the spectrograph is 25–29 nm, and the grating has a nominal groove spacing of 1/4800 mm and a radius of curvature of 1500 mm.

Fig. 2
Fig. 2

Schematic diagram of the optical layout.

Fig. 3
Fig. 3

Spectral and spatial focus with the SVLS grating.

Fig. 4
Fig. 4

Spectral and spatial focus with the TULS grating.

Fig. 5
Fig. 5

Spectral images obtained with the spectrograph with a SVLS grating. The specifications of the grating are σ0 = 1/4800 mm, R = 1500 mm, b 2 = 0.0379660, b 3 = 0.003173, and b 4 = 0.000348, and the ruled area is 100 mm × 100 mm. The incidence angle is 5.25434°, and the detector plane is at x = 1500 mm. The frame size on the spot diagram is 15 μm × 15 μm.

Fig. 6
Fig. 6

Spectral images obtained with the spectrograph with a TULS grating. The specifications of the grating are σ0 = 1/4800 mm, R = 1500 mm, and ρ = 1487.316 mm, and the ruled area is 100 mm × 100 mm. The incidence angle is 7.446478°, and the detector plane is at x = 1499.932 mm. The frame size on the spot diagram is 15 μm × 15 μm.

Fig. 7
Fig. 7

Spectral images obtained with the spectrograph with a SVLS grating that has a 0.1% radius error. The specifications of the grating and its mounting condition are the same as for Fig. 5, except that the radius of curvature is 1501.5 mm and the detector plane is at x = 1501.5 mm.

Fig. 8
Fig. 8

Spectral images obtained with the spectrograph with a TULS grating that has a 0.01% toroidal ratio error. The specifications of the grating and its mounting condition are the same as for Fig. 6, except that the toroidal radius is 1487.465 mm.

Fig. 9
Fig. 9

Spectral images obtained with the spectrograph with a SVLS grating that has a 0.1-mm defocus. The specifications of the grating and its mounting condition are the same as for Fig. 5, except that the detector plane is at x = 1499.9 mm.

Fig. 10
Fig. 10

Spectral images obtained with the spectrograph with a TULS grating that has a 0.1-mm defocus. The specifications of the grating and its mounting condition are the same as for Fig. 6, except that the detector plane is at x = 1499.832 mm.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

F = AP + PB + nm λ ,
δ F δ w = 0 ,     δ F δ l = 0 .
AP 2 = x - u 2 + y - w 2 + l 2 , BP 2 = x - u 2 + y - w 2 + l 2 .
AP = r 2 + u 2 + l 2 - 2 ur   cos   α - 2 wr   sin   α , BP = r 2 + u 2 + l 2 - 2 ur   cos   β - 2 wr   sin   β ,
u - R 2 + w 2 + l 2 = R 2 .
u = w 2 + l 2 2 R + w 2 + l 2 2 8 R 3 + w 2 + l 2 3 16 R 5 + ….
n = 1 σ 0 w + b 2 R   w 2 + b 3 R 2   w 3 + b 4 R 3   w 4 + ,
σ = σ 0 1 + 2 b 2 R   w + 3 b 3 R 2   w 2 + 4 b 4 R 3   w 3 + .
F = r + r + wF 10 + w 2 F 20 + l 2 F 02 + w 3 F 30 + wl 2 F 12 + w 4 F 40 + w 2 l 2 F 22 + l 4 F 04 + T w 5 ,
F ij = C ij + m λ σ 0   M ij .
C 10 = - sin   α - sin   β ,
M 10 = 1 ,
C 20 = 1 2 cos 2   α r - cos   α R + 1 2 cos 2   β r - cos   β R ,
M 20 = b 2 / R ,
C 02 = 1 2 1 r - cos   α R + 1 2 1 r - cos   β R ,
M 02 = 0 ,
C 30 = 1 2 sin   α r cos 2   α r - cos   α R + 1 2 sin   β r × cos 2   β r - cos   β R ,
M 30 = b 3 / R 2 ,
C 12 = 1 2 sin   α r 1 r - cos   α R + 1 2 sin   β r 1 r - cos   β R ,
M 12 = 0 ,
C 40 = 1 8 4   sin 2   α r 2 cos 2   α r - cos   α R - 1 r cos 2   α r - cos   α R 2 + 1 R 2 1 r - cos   α R + 1 8 4   sin 2   β r 2 cos 2   β r - cos   β R - 1 r cos 2   β r - cos   β R 2 + 1 R 2 1 r - cos   β R ,
M 40 = b 4 / R 3 ,
C 22 = 1 4 2   sin 2   α r 2 1 r - cos   α R - 1 r cos 2   α r - cos   α R × 1 r - cos   α R + 1 R 2 1 r - cos   α R + 1 4 2   sin 2   β r 2 × 1 r - cos   β R - 1 r cos 2   β r - cos   β R 1 r - cos   β R + 1 R 2 1 r - cos   β R ,
M 22 = 0 ,
C 04 = 1 8 - 1 r 1 r - cos   α R 2 + 1 R 2 1 r - cos   α R + 1 8 - 1 r 1 r - cos   β R 2 + 1 R 2 1 r - cos   β R ,
M 04 = 0 .
r = rR   cos 2   β r cos   α + cos   β - 2 m λ b 2 / σ 0 - R   cos 2   α .
r   cos   α = R ,     r   cos   β = R .
b 2 = σ 0 2 m λ cos   α   sin 2   α + m λ σ 0 - sin   α 2 × 1 - m λ σ 0 - sin   α 2 1 / 2 .
b 2 = σ 0 2 m λ 1 cos   α   sin 2   α + m λ 1 σ 0 - sin   α 2 × 1 - m λ 1 σ 0 - sin   α 2 1 / 2 ,
b 2 = σ 0 2 m λ 2 cos   α   sin 2   α + m λ 2 σ 0 - sin   α 2 × 1 - m λ 2 σ 0 - sin   α 2 1 / 2 .
u 2 + w 2 + l 2 = 2 Ru - 2 R R - ρ + 2 R - ρ R - u 2 + w 2 1 / 2 .
u = w 2 2 R + l 2 2 ρ + w 4 8 R 3 + l 4 8 ρ 3 + w 2 l 2 4 R 2 ρ + ….
C 02 = 1 2 1 r - cos   α ρ + 1 2 1 r - cos   β ρ ,
C 12 = 1 2 sin   α r 1 r - cos   α ρ + 1 2 sin   β r × 1 r - cos   β ρ ,
C 22 = 1 4 2   sin 2   α r 2 1 r - cos   α ρ - 1 r cos 2   α r - cos   α R × 1 r - cos   α ρ + 1 R ρ 1 r - cos   α R + 1 4 2   sin 2   β r 2 1 r - cos   β ρ - 1 r cos 2   β r - cos   β R × 1 r - cos   β ρ + 1 R ρ 1 r - cos   β R ,
C 04 = 1 8 - 1 r 1 r - cos   α ρ 2 + 1 ρ 2 1 r - cos   α ρ + 1 8 - 1 r 1 r - cos   β ρ 2 + 1 ρ 2 1 r - cos   β ρ ,
M 20 = M 30 = M 40 = 0 .

Metrics