Abstract

The fabrication of polymeric single-mode Gaussian profile optical waveguides is described. We used poly(methyl methacrylate) and a mixture of two intermiscible monomers for the cladding and the core, respectively, of the waveguides. The cores of the waveguides were fabricated by with an argon-ion laser beam. The waveguides had single-mode Gaussian refractive-index profiles. By using such waveguides, we fabricated directional couplers for power coupling to the adjacent waveguides and also parallel waveguide arrays for preventing power coupling to adjacent waveguides for use in interconnect chips. We analyzed the characteristics of these couplers by using the coupled-mode theory and compared the results with those obtained with the beam propagation method. Experimental results showed good correlation with the theoretical values. We designed optical bus arrays for interconnect chips, considering the variation of normalized frequency V, the power penalty, and the dimensions of the waveguides and the separation between them. The number of waveguides in the bus array increased with increasing V. For a known value of V, a waveguide’s density increases with a decrease of its dimensions. The theoretical maximum number of waveguides is ∼1490/cm and ∼846/cm for 2 μm × 2 μm and 4 μm × 4 μm single-mode waveguides, respectively, to satisfy a 1-dB power penalty criterion at bit-error rate of 10-9. We fabricated interconnect bus arrays with fifteen 4 μm × 4 μm waveguides for a 3-cm coupling length, and the experimental results were verified to be in good agreement with the theoretical values.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
    [CrossRef]
  2. L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics (Dekker, New York, 1992).
  3. M. Dagenais, R. Leheny, H. Temkin, P. Bhattacharya, “Application and challenges of OEIC technology: a report on the 1989 Hilton Head workshop,” J. Lightwave Technol. 8, 846–862 (1990).
    [CrossRef]
  4. R. T. Chen, “Graded index linear and curved polymer channel waveguide arrays for massively parallel optical interconnects,” Appl. Phys. Lett. 61, 2278–2280 (1992).
    [CrossRef]
  5. K. Kato, K. Okamoto, H. Oazaki, Y. Ohmori, I. Nishi, “Packaging of large-scale integrated-optic N × N star couplers,” IEEE Photon. Technol. Lett. 4, 348–351 (1993).
    [CrossRef]
  6. C. S. Li, C. M. Olesen, D. G. Messerchmitt, “Analysis of crosstalk penalty in dense optical chip interconnects using single-mode waveguides,” J. Lightwave Technol. 9, 1693–1700 (1991).
    [CrossRef]
  7. R. T. Chen, L. Sadovnik, T. Jannson, J. Johnson, “Single-mode polymer waveguide modulator,” Appl. Phys. Lett. 58, 1–3 (1991).
    [CrossRef]
  8. R. T. Chen, S. Tang, T. Jonnson, J. Jonnson, “A 45 cm long compression molded polymer-based optical bus,” Appl. Phys. Lett. 61, 2278–2280 (1992).
    [CrossRef]
  9. S. Tang, R. T. Chen, R. Mayer, D. Gerold, T. Jannson, A. Kostrzewski, “Channel cross-coupling in a polymer-based single-mode bus array,” J. Lightwave Technol. 13, 37–41 (1995).
    [CrossRef]
  10. R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguide using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
    [CrossRef]
  11. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
    [CrossRef]
  12. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  13. T. K. Findakly, Handbook of Microwave and Optical Components (Wiley, New York, 1989).
  14. W. H. Tsai, S. C. Chao, M. S. Wu, “Variational analysis of single-mode inhomogeneous planar optical waveguide,” J. Lightwave Technol. 10, 747–752 (1992).
    [CrossRef]
  15. J. Gowar, Optical Communication Systems (Prentice-Hall, Englewood Cliffs, N.J., 1984).
  16. A. K. Das, A. K. Ganguly, “Precise control of wavelength-selective single-mode-fiber-thin-film directional coupler,” Appl. Opt. 34, 6911–6914 (1995).
    [CrossRef] [PubMed]
  17. A. Katir, Lasers and Optical Fibers in Medicine (Academic, New York, 1993).
  18. P. Danielsen, “Two dimensional propogating beam analysis of an electro-optic waveguide modulator,” IEEE J. Quantum Electron. QE-20, 1093–1097 (1984).
    [CrossRef]
  19. Y. Chung, N. Dangli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335–1339 (1990).
    [CrossRef]
  20. A. K. Das, A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin-film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
    [CrossRef] [PubMed]
  21. A. K. Das, S. Ghosh, B. S. Chaudhari, “Fabrication of single-mode step and Gaussian refractive index profile polymeric optical waveguides,” in Proceedings of Annual Paper Meet ’97 (Institution of Engineers, Khulna, Bangladesh, 1997), paper 42, pp. 343–357.
  22. A. K. Das, B. S. Chaudhari, S. Ghosh, “Characteristics of polymeric optical interconnects bus arrays and Y-branches using argon ion laser,” in Proceedings of Walmi ’97 (Jadavpur University, Calcutta, India, (1997), pp. 149–157.

1996

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

1995

A. K. Das, A. K. Ganguly, “Precise control of wavelength-selective single-mode-fiber-thin-film directional coupler,” Appl. Opt. 34, 6911–6914 (1995).
[CrossRef] [PubMed]

S. Tang, R. T. Chen, R. Mayer, D. Gerold, T. Jannson, A. Kostrzewski, “Channel cross-coupling in a polymer-based single-mode bus array,” J. Lightwave Technol. 13, 37–41 (1995).
[CrossRef]

1994

1993

K. Kato, K. Okamoto, H. Oazaki, Y. Ohmori, I. Nishi, “Packaging of large-scale integrated-optic N × N star couplers,” IEEE Photon. Technol. Lett. 4, 348–351 (1993).
[CrossRef]

1992

R. T. Chen, “Graded index linear and curved polymer channel waveguide arrays for massively parallel optical interconnects,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

R. T. Chen, S. Tang, T. Jonnson, J. Jonnson, “A 45 cm long compression molded polymer-based optical bus,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

W. H. Tsai, S. C. Chao, M. S. Wu, “Variational analysis of single-mode inhomogeneous planar optical waveguide,” J. Lightwave Technol. 10, 747–752 (1992).
[CrossRef]

1991

C. S. Li, C. M. Olesen, D. G. Messerchmitt, “Analysis of crosstalk penalty in dense optical chip interconnects using single-mode waveguides,” J. Lightwave Technol. 9, 1693–1700 (1991).
[CrossRef]

R. T. Chen, L. Sadovnik, T. Jannson, J. Johnson, “Single-mode polymer waveguide modulator,” Appl. Phys. Lett. 58, 1–3 (1991).
[CrossRef]

1990

M. Dagenais, R. Leheny, H. Temkin, P. Bhattacharya, “Application and challenges of OEIC technology: a report on the 1989 Hilton Head workshop,” J. Lightwave Technol. 8, 846–862 (1990).
[CrossRef]

Y. Chung, N. Dangli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335–1339 (1990).
[CrossRef]

1989

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguide using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
[CrossRef]

1984

P. Danielsen, “Two dimensional propogating beam analysis of an electro-optic waveguide modulator,” IEEE J. Quantum Electron. QE-20, 1093–1097 (1984).
[CrossRef]

Bhattacharya, P.

M. Dagenais, R. Leheny, H. Temkin, P. Bhattacharya, “Application and challenges of OEIC technology: a report on the 1989 Hilton Head workshop,” J. Lightwave Technol. 8, 846–862 (1990).
[CrossRef]

Booth, B. L.

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

Chao, S. C.

W. H. Tsai, S. C. Chao, M. S. Wu, “Variational analysis of single-mode inhomogeneous planar optical waveguide,” J. Lightwave Technol. 10, 747–752 (1992).
[CrossRef]

Chaudhari, B. S.

A. K. Das, S. Ghosh, B. S. Chaudhari, “Fabrication of single-mode step and Gaussian refractive index profile polymeric optical waveguides,” in Proceedings of Annual Paper Meet ’97 (Institution of Engineers, Khulna, Bangladesh, 1997), paper 42, pp. 343–357.

A. K. Das, B. S. Chaudhari, S. Ghosh, “Characteristics of polymeric optical interconnects bus arrays and Y-branches using argon ion laser,” in Proceedings of Walmi ’97 (Jadavpur University, Calcutta, India, (1997), pp. 149–157.

Chen, R. T.

S. Tang, R. T. Chen, R. Mayer, D. Gerold, T. Jannson, A. Kostrzewski, “Channel cross-coupling in a polymer-based single-mode bus array,” J. Lightwave Technol. 13, 37–41 (1995).
[CrossRef]

R. T. Chen, S. Tang, T. Jonnson, J. Jonnson, “A 45 cm long compression molded polymer-based optical bus,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

R. T. Chen, “Graded index linear and curved polymer channel waveguide arrays for massively parallel optical interconnects,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

R. T. Chen, L. Sadovnik, T. Jannson, J. Johnson, “Single-mode polymer waveguide modulator,” Appl. Phys. Lett. 58, 1–3 (1991).
[CrossRef]

Chung, Y.

Y. Chung, N. Dangli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335–1339 (1990).
[CrossRef]

Dagenais, M.

M. Dagenais, R. Leheny, H. Temkin, P. Bhattacharya, “Application and challenges of OEIC technology: a report on the 1989 Hilton Head workshop,” J. Lightwave Technol. 8, 846–862 (1990).
[CrossRef]

Dangli, N.

Y. Chung, N. Dangli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335–1339 (1990).
[CrossRef]

Danielsen, P.

P. Danielsen, “Two dimensional propogating beam analysis of an electro-optic waveguide modulator,” IEEE J. Quantum Electron. QE-20, 1093–1097 (1984).
[CrossRef]

Das, A. K.

A. K. Das, A. K. Ganguly, “Precise control of wavelength-selective single-mode-fiber-thin-film directional coupler,” Appl. Opt. 34, 6911–6914 (1995).
[CrossRef] [PubMed]

A. K. Das, A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin-film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
[CrossRef] [PubMed]

A. K. Das, B. S. Chaudhari, S. Ghosh, “Characteristics of polymeric optical interconnects bus arrays and Y-branches using argon ion laser,” in Proceedings of Walmi ’97 (Jadavpur University, Calcutta, India, (1997), pp. 149–157.

A. K. Das, S. Ghosh, B. S. Chaudhari, “Fabrication of single-mode step and Gaussian refractive index profile polymeric optical waveguides,” in Proceedings of Annual Paper Meet ’97 (Institution of Engineers, Khulna, Bangladesh, 1997), paper 42, pp. 343–357.

Eldada, L.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Findakly, T. K.

T. K. Findakly, Handbook of Microwave and Optical Components (Wiley, New York, 1989).

Ganguly, A. K.

Gerold, D.

S. Tang, R. T. Chen, R. Mayer, D. Gerold, T. Jannson, A. Kostrzewski, “Channel cross-coupling in a polymer-based single-mode bus array,” J. Lightwave Technol. 13, 37–41 (1995).
[CrossRef]

Ghosh, S.

A. K. Das, S. Ghosh, B. S. Chaudhari, “Fabrication of single-mode step and Gaussian refractive index profile polymeric optical waveguides,” in Proceedings of Annual Paper Meet ’97 (Institution of Engineers, Khulna, Bangladesh, 1997), paper 42, pp. 343–357.

A. K. Das, B. S. Chaudhari, S. Ghosh, “Characteristics of polymeric optical interconnects bus arrays and Y-branches using argon ion laser,” in Proceedings of Walmi ’97 (Jadavpur University, Calcutta, India, (1997), pp. 149–157.

Gowar, J.

J. Gowar, Optical Communication Systems (Prentice-Hall, Englewood Cliffs, N.J., 1984).

Hartman, D. H.

R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguide using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
[CrossRef]

Jannson, T.

S. Tang, R. T. Chen, R. Mayer, D. Gerold, T. Jannson, A. Kostrzewski, “Channel cross-coupling in a polymer-based single-mode bus array,” J. Lightwave Technol. 13, 37–41 (1995).
[CrossRef]

R. T. Chen, L. Sadovnik, T. Jannson, J. Johnson, “Single-mode polymer waveguide modulator,” Appl. Phys. Lett. 58, 1–3 (1991).
[CrossRef]

Johnson, J.

R. T. Chen, L. Sadovnik, T. Jannson, J. Johnson, “Single-mode polymer waveguide modulator,” Appl. Phys. Lett. 58, 1–3 (1991).
[CrossRef]

Jonnson, J.

R. T. Chen, S. Tang, T. Jonnson, J. Jonnson, “A 45 cm long compression molded polymer-based optical bus,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

Jonnson, T.

R. T. Chen, S. Tang, T. Jonnson, J. Jonnson, “A 45 cm long compression molded polymer-based optical bus,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

Katir, A.

A. Katir, Lasers and Optical Fibers in Medicine (Academic, New York, 1993).

Kato, K.

K. Kato, K. Okamoto, H. Oazaki, Y. Ohmori, I. Nishi, “Packaging of large-scale integrated-optic N × N star couplers,” IEEE Photon. Technol. Lett. 4, 348–351 (1993).
[CrossRef]

Kostrzewski, A.

S. Tang, R. T. Chen, R. Mayer, D. Gerold, T. Jannson, A. Kostrzewski, “Channel cross-coupling in a polymer-based single-mode bus array,” J. Lightwave Technol. 13, 37–41 (1995).
[CrossRef]

Krchnavek, R. R.

R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguide using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
[CrossRef]

Lalk, G. R.

R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguide using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
[CrossRef]

Leheny, R.

M. Dagenais, R. Leheny, H. Temkin, P. Bhattacharya, “Application and challenges of OEIC technology: a report on the 1989 Hilton Head workshop,” J. Lightwave Technol. 8, 846–862 (1990).
[CrossRef]

Li, C. S.

C. S. Li, C. M. Olesen, D. G. Messerchmitt, “Analysis of crosstalk penalty in dense optical chip interconnects using single-mode waveguides,” J. Lightwave Technol. 9, 1693–1700 (1991).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Mayer, R.

S. Tang, R. T. Chen, R. Mayer, D. Gerold, T. Jannson, A. Kostrzewski, “Channel cross-coupling in a polymer-based single-mode bus array,” J. Lightwave Technol. 13, 37–41 (1995).
[CrossRef]

Messerchmitt, D. G.

C. S. Li, C. M. Olesen, D. G. Messerchmitt, “Analysis of crosstalk penalty in dense optical chip interconnects using single-mode waveguides,” J. Lightwave Technol. 9, 1693–1700 (1991).
[CrossRef]

Nishi, I.

K. Kato, K. Okamoto, H. Oazaki, Y. Ohmori, I. Nishi, “Packaging of large-scale integrated-optic N × N star couplers,” IEEE Photon. Technol. Lett. 4, 348–351 (1993).
[CrossRef]

Oazaki, H.

K. Kato, K. Okamoto, H. Oazaki, Y. Ohmori, I. Nishi, “Packaging of large-scale integrated-optic N × N star couplers,” IEEE Photon. Technol. Lett. 4, 348–351 (1993).
[CrossRef]

Ohmori, Y.

K. Kato, K. Okamoto, H. Oazaki, Y. Ohmori, I. Nishi, “Packaging of large-scale integrated-optic N × N star couplers,” IEEE Photon. Technol. Lett. 4, 348–351 (1993).
[CrossRef]

Okamoto, K.

K. Kato, K. Okamoto, H. Oazaki, Y. Ohmori, I. Nishi, “Packaging of large-scale integrated-optic N × N star couplers,” IEEE Photon. Technol. Lett. 4, 348–351 (1993).
[CrossRef]

Olesen, C. M.

C. S. Li, C. M. Olesen, D. G. Messerchmitt, “Analysis of crosstalk penalty in dense optical chip interconnects using single-mode waveguides,” J. Lightwave Technol. 9, 1693–1700 (1991).
[CrossRef]

Sadovnik, L.

R. T. Chen, L. Sadovnik, T. Jannson, J. Johnson, “Single-mode polymer waveguide modulator,” Appl. Phys. Lett. 58, 1–3 (1991).
[CrossRef]

Shacklette, L. W.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Stengel, K. M. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Tang, S.

S. Tang, R. T. Chen, R. Mayer, D. Gerold, T. Jannson, A. Kostrzewski, “Channel cross-coupling in a polymer-based single-mode bus array,” J. Lightwave Technol. 13, 37–41 (1995).
[CrossRef]

R. T. Chen, S. Tang, T. Jonnson, J. Jonnson, “A 45 cm long compression molded polymer-based optical bus,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

Temkin, H.

M. Dagenais, R. Leheny, H. Temkin, P. Bhattacharya, “Application and challenges of OEIC technology: a report on the 1989 Hilton Head workshop,” J. Lightwave Technol. 8, 846–862 (1990).
[CrossRef]

Tsai, W. H.

W. H. Tsai, S. C. Chao, M. S. Wu, “Variational analysis of single-mode inhomogeneous planar optical waveguide,” J. Lightwave Technol. 10, 747–752 (1992).
[CrossRef]

Wu, M. S.

W. H. Tsai, S. C. Chao, M. S. Wu, “Variational analysis of single-mode inhomogeneous planar optical waveguide,” J. Lightwave Technol. 10, 747–752 (1992).
[CrossRef]

Xu, C.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Yardley, J. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. T. Chen, “Graded index linear and curved polymer channel waveguide arrays for massively parallel optical interconnects,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

R. T. Chen, L. Sadovnik, T. Jannson, J. Johnson, “Single-mode polymer waveguide modulator,” Appl. Phys. Lett. 58, 1–3 (1991).
[CrossRef]

R. T. Chen, S. Tang, T. Jonnson, J. Jonnson, “A 45 cm long compression molded polymer-based optical bus,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

IEEE J. Quantum Electron.

P. Danielsen, “Two dimensional propogating beam analysis of an electro-optic waveguide modulator,” IEEE J. Quantum Electron. QE-20, 1093–1097 (1984).
[CrossRef]

Y. Chung, N. Dangli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335–1339 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Kato, K. Okamoto, H. Oazaki, Y. Ohmori, I. Nishi, “Packaging of large-scale integrated-optic N × N star couplers,” IEEE Photon. Technol. Lett. 4, 348–351 (1993).
[CrossRef]

J. Appl. Phys.

R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguide using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
[CrossRef]

J. Lightwave Technol.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

C. S. Li, C. M. Olesen, D. G. Messerchmitt, “Analysis of crosstalk penalty in dense optical chip interconnects using single-mode waveguides,” J. Lightwave Technol. 9, 1693–1700 (1991).
[CrossRef]

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

S. Tang, R. T. Chen, R. Mayer, D. Gerold, T. Jannson, A. Kostrzewski, “Channel cross-coupling in a polymer-based single-mode bus array,” J. Lightwave Technol. 13, 37–41 (1995).
[CrossRef]

W. H. Tsai, S. C. Chao, M. S. Wu, “Variational analysis of single-mode inhomogeneous planar optical waveguide,” J. Lightwave Technol. 10, 747–752 (1992).
[CrossRef]

M. Dagenais, R. Leheny, H. Temkin, P. Bhattacharya, “Application and challenges of OEIC technology: a report on the 1989 Hilton Head workshop,” J. Lightwave Technol. 8, 846–862 (1990).
[CrossRef]

Opt. Lett.

Other

A. K. Das, S. Ghosh, B. S. Chaudhari, “Fabrication of single-mode step and Gaussian refractive index profile polymeric optical waveguides,” in Proceedings of Annual Paper Meet ’97 (Institution of Engineers, Khulna, Bangladesh, 1997), paper 42, pp. 343–357.

A. K. Das, B. S. Chaudhari, S. Ghosh, “Characteristics of polymeric optical interconnects bus arrays and Y-branches using argon ion laser,” in Proceedings of Walmi ’97 (Jadavpur University, Calcutta, India, (1997), pp. 149–157.

J. Gowar, Optical Communication Systems (Prentice-Hall, Englewood Cliffs, N.J., 1984).

L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics (Dekker, New York, 1992).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

T. K. Findakly, Handbook of Microwave and Optical Components (Wiley, New York, 1989).

A. Katir, Lasers and Optical Fibers in Medicine (Academic, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cross section of a single-mode Gaussian profile polymeric waveguide array with uniform channel separation. Abbreviations are defined in text.

Fig. 2
Fig. 2

Schematic diagram of photochemical polymerization by an argon-ion laser for fabrication of polymeric waveguiding devices.

Fig. 3
Fig. 3

Variation of PMMA film thickness with spinning speed for the solutions, with the viscosity of the solution (c) greater than viscosity of solution (b) greater than viscosity of solution (a).

Fig. 4
Fig. 4

Propagation constant (β g ) versus width (2a) of a Gaussian profile waveguide for three values of core refractive index n co with n cl = 1.4801.

Fig. 5
Fig. 5

Theoretical plots of coupled power P c versus propagation distance z for three values of core refractive index n co with n cl = 1.4801, showing experimental points.

Fig. 6
Fig. 6

Experimental setup for measurement of propagation characteristics of polymeric waveguiding devices.

Fig. 7
Fig. 7

Theoretical plots of coupled power P c versus propagation distance z for directional couplers (with lower values of a g ) and for a parallel waveguide array (with higher values of a g ), showing experimental points.

Fig. 8
Fig. 8

Theoretical plots of normalized frequency V versus power penalty P p for four values of center-to-center distance d cc between adjacent waveguides of 4 μm × 4 μm size with 3-cm coupling length.

Fig. 9
Fig. 9

(a) Theoretical plots of cross talk [(P c /P in) × 100] versus expected output power in the center waveguide, 0, and the noise power V n 2 for 4 × 4 waveguides at 3-cm coupling length. (b) Theoretical plots of the gap between adjacent waveguides a g versus 0 and V n 2 for the same data used for (a), showing experimental points.

Fig. 10
Fig. 10

Theoretical curves of V versus d cc to satisfy the 1-dB power penalty criterion for several waveguide sizes at 3-cm coupling length, showing experimental points.

Fig. 11
Fig. 11

Theoretical plots of waveguide dimensions (h × 2a) versus number of waveguides to be fabricated upon a substrate of 1-cm width for three values of coupling lengths at V = 2.4 to satisfy the 1-dB power penalty criterion.

Tables (1)

Tables Icon

Table 1 Summary of the Parameters Used in the Calculations

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

U 2 = a 2 - +   k 0 2 n co 2 - n 2 x | ψ t | 2 d x + - + d ψ t d x 2 d n - +   | ψ t | 2 d x ,
n 2 x = n cl 2 + 2 n cl Δ n   exp - x 2 / a 2 x 0     = n cl 2 x < 0 ,
P c = P in F 2 sin 2 Cz F ,
F 2 = 1 1 + β 1 - β 2 / 2 C 2 ,
d b n z d z - i β b n z = iC b n - 1 z + b n + 1 z , - N < n < + N ,
b 0 z = b 0 J 0 2 Cz + n = - N N   b n 0 i n J n 2 Cz × exp i β z ,     n 0 ,
P ¯ 0 = 1 - 2 b 0 2 z P 0 + b 0 2 z P - 1 + P + 1 ,
V 0 = η e h ν   P ¯ 0 R F ,
V N 2 = V A * 2 1 + R F R 2 + 4 π 2 3 BW 2 C in 2 R F 2 + R F 2 4 kT R + I A * 2 + 4 kTR F BW + R F 2 - BW + BW   S 0 f d f ,
P p dB = 10   log P cros P min ,
2 a = 4 λ L f π D ,
a y y f D 2 - a + a .
Δ 4.1   λ L f / D 2

Metrics