Abstract

We present a new finishing process that is capable of locally shaping and polishing optical surfaces of complex shapes. A fluid jet system is used to guide a premixed slurry at pressures less than 6 bars to the optical surface. We used a slurry comprising water and 10% #800 SiC abrasives (21.8 μm) to reduce the surface roughness of a BK7 sample from 350 to 25 nm rms and to vary the shape of a polished sample BK7, maintaining its surface roughness of 1.6 nm rms, thereby proving both the shaping and polishing possibilities of the presented method.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Jones, W. J. Rupp, “Rapid optical fabrication with computer-controlled optical surfacing,” Opt. Eng. 30, 1962–1969 (1991).
    [CrossRef]
  2. N. B. Kirk, J. V. Wood, “Glass polishing,” Br. Ceram. Trans. 93, 25–30 (1994).
  3. Y. Mori, K. Yamauchi, K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
    [CrossRef]
  4. S. F. Soares, D. R. Baselt, J. P. Black, K. C. Jungling, W. K. Stowell, “Float-polishing process and analysis of float-polished quartz,” Appl. Opt. 33, 89–95 (1994).
    [CrossRef] [PubMed]
  5. Y. Mori, K. Yamauchi, K. Endo, “Mechanism of atomic removal in elastic emission machining,” Precis. Eng. 10, 24–28 (1988).
    [CrossRef]
  6. S. D. Jacobs, F. Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, D. Golini, “Magnetorheological finishing of IR materials,” in Optical Manufacturing and Testing II, H. Philip Stahl, ed., Proc. SPIE3134, 258–269 (1997).
    [CrossRef]
  7. M. Hashish, “Comparative evaluation of abrasive liquid jet machining systems polishing,” Trans. ASME 115, 44–50 (1993).

1994 (2)

1993 (1)

M. Hashish, “Comparative evaluation of abrasive liquid jet machining systems polishing,” Trans. ASME 115, 44–50 (1993).

1991 (1)

R. A. Jones, W. J. Rupp, “Rapid optical fabrication with computer-controlled optical surfacing,” Opt. Eng. 30, 1962–1969 (1991).
[CrossRef]

1988 (1)

Y. Mori, K. Yamauchi, K. Endo, “Mechanism of atomic removal in elastic emission machining,” Precis. Eng. 10, 24–28 (1988).
[CrossRef]

1987 (1)

Y. Mori, K. Yamauchi, K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
[CrossRef]

Baselt, D. R.

Black, J. P.

Edwards, H.

S. D. Jacobs, F. Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, D. Golini, “Magnetorheological finishing of IR materials,” in Optical Manufacturing and Testing II, H. Philip Stahl, ed., Proc. SPIE3134, 258–269 (1997).
[CrossRef]

Endo, K.

Y. Mori, K. Yamauchi, K. Endo, “Mechanism of atomic removal in elastic emission machining,” Precis. Eng. 10, 24–28 (1988).
[CrossRef]

Y. Mori, K. Yamauchi, K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
[CrossRef]

Feingold, J. B.

S. D. Jacobs, F. Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, D. Golini, “Magnetorheological finishing of IR materials,” in Optical Manufacturing and Testing II, H. Philip Stahl, ed., Proc. SPIE3134, 258–269 (1997).
[CrossRef]

Fess, E. M.

S. D. Jacobs, F. Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, D. Golini, “Magnetorheological finishing of IR materials,” in Optical Manufacturing and Testing II, H. Philip Stahl, ed., Proc. SPIE3134, 258–269 (1997).
[CrossRef]

Gillman, B. E.

S. D. Jacobs, F. Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, D. Golini, “Magnetorheological finishing of IR materials,” in Optical Manufacturing and Testing II, H. Philip Stahl, ed., Proc. SPIE3134, 258–269 (1997).
[CrossRef]

Golini, D.

S. D. Jacobs, F. Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, D. Golini, “Magnetorheological finishing of IR materials,” in Optical Manufacturing and Testing II, H. Philip Stahl, ed., Proc. SPIE3134, 258–269 (1997).
[CrossRef]

Hashish, M.

M. Hashish, “Comparative evaluation of abrasive liquid jet machining systems polishing,” Trans. ASME 115, 44–50 (1993).

Jacobs, S. D.

S. D. Jacobs, F. Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, D. Golini, “Magnetorheological finishing of IR materials,” in Optical Manufacturing and Testing II, H. Philip Stahl, ed., Proc. SPIE3134, 258–269 (1997).
[CrossRef]

Jones, R. A.

R. A. Jones, W. J. Rupp, “Rapid optical fabrication with computer-controlled optical surfacing,” Opt. Eng. 30, 1962–1969 (1991).
[CrossRef]

Jungling, K. C.

Kirk, N. B.

N. B. Kirk, J. V. Wood, “Glass polishing,” Br. Ceram. Trans. 93, 25–30 (1994).

Kordonski, W. I.

S. D. Jacobs, F. Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, D. Golini, “Magnetorheological finishing of IR materials,” in Optical Manufacturing and Testing II, H. Philip Stahl, ed., Proc. SPIE3134, 258–269 (1997).
[CrossRef]

Mori, Y.

Y. Mori, K. Yamauchi, K. Endo, “Mechanism of atomic removal in elastic emission machining,” Precis. Eng. 10, 24–28 (1988).
[CrossRef]

Y. Mori, K. Yamauchi, K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
[CrossRef]

Rupp, W. J.

R. A. Jones, W. J. Rupp, “Rapid optical fabrication with computer-controlled optical surfacing,” Opt. Eng. 30, 1962–1969 (1991).
[CrossRef]

Soares, S. F.

Stowell, W. K.

Wood, J. V.

N. B. Kirk, J. V. Wood, “Glass polishing,” Br. Ceram. Trans. 93, 25–30 (1994).

Yamauchi, K.

Y. Mori, K. Yamauchi, K. Endo, “Mechanism of atomic removal in elastic emission machining,” Precis. Eng. 10, 24–28 (1988).
[CrossRef]

Y. Mori, K. Yamauchi, K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
[CrossRef]

Yang, F.

S. D. Jacobs, F. Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, D. Golini, “Magnetorheological finishing of IR materials,” in Optical Manufacturing and Testing II, H. Philip Stahl, ed., Proc. SPIE3134, 258–269 (1997).
[CrossRef]

Appl. Opt. (1)

Br. Ceram. Trans. (1)

N. B. Kirk, J. V. Wood, “Glass polishing,” Br. Ceram. Trans. 93, 25–30 (1994).

Opt. Eng. (1)

R. A. Jones, W. J. Rupp, “Rapid optical fabrication with computer-controlled optical surfacing,” Opt. Eng. 30, 1962–1969 (1991).
[CrossRef]

Precis. Eng. (2)

Y. Mori, K. Yamauchi, K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
[CrossRef]

Y. Mori, K. Yamauchi, K. Endo, “Mechanism of atomic removal in elastic emission machining,” Precis. Eng. 10, 24–28 (1988).
[CrossRef]

Trans. ASME (1)

M. Hashish, “Comparative evaluation of abrasive liquid jet machining systems polishing,” Trans. ASME 115, 44–50 (1993).

Other (1)

S. D. Jacobs, F. Yang, E. M. Fess, J. B. Feingold, B. E. Gillman, W. I. Kordonski, H. Edwards, D. Golini, “Magnetorheological finishing of IR materials,” in Optical Manufacturing and Testing II, H. Philip Stahl, ed., Proc. SPIE3134, 258–269 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the setup and definition of parameters.

Fig. 2
Fig. 2

Dependence on the applied pressure p of the width τ and the depth ϑ of the circular depressions that were machined into the ground BK7 sample at ω = 0 Hz, κ = 2 mm, ψ = 0°, and t m = 15 min.

Fig. 3
Fig. 3

Dependence on the applied pressure p of the width τ and the depth ϑ of the circular depressions that were machined into the polished BK7 sample at ω = 0 Hz, κ = 1 mm, ψ = 0°, and t m = 10 min.

Fig. 4
Fig. 4

Dependence on the machining time t m of the width τ and the depth ϑ of the circular depressions that were machined into the polished BK7 sample at ω = 0 Hz, κ = 2 mm, ψ = 0°, and p = 5 bars.

Fig. 5
Fig. 5

Dependence on the machining time t m of the width τ and the depth ϑ of the circular depressions that were machined into the polished BK7 sample at ω = 0 Hz, κ = 1 mm, ψ = 0°, and p = 5.5 bars. At t m = 3 min, the stream was accidentally mixed with air resulting in an increased wear and a dull surface of 160 nm rms.

Fig. 6
Fig. 6

Surface profile of the polished sample, containing three grooves machined at 5, 3, and 2 bars with ω = 1 Hz, ψ = 0°, κ = 2 mm, and t m = 60 min.

Tables (1)

Tables Icon

Table 1 Depth and Surface Roughness of the Machined Grooves in BK7 (Starting Roughness, 1.6 nm rms) Shown in Fig. 6

Metrics