Abstract

A chromatic confocal microscope constructed with a white-light source in combination with a diffractive lens provides wavelength-to-depth coding for profile measurements of a three-dimensional sample. We acquired depth-section images nonmechanically and in parallel by incorporating a slit-scan confocal technique into the system. A system using a 100× objective obtained a depth resolution of 0.023 μm comparable with surface profilometers that operate using conventional confocal microscopy. Experimental measurements of a four-phase-level diffractive element and of a machined, metal bearing are presented.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).
  2. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1989).
  3. S. G. Anderson, “Confocal laser microscopes see a wider field of application,” Laser Focus World 30(2), 83–86 (1994).
  4. M. Bertero, P. Boccacci, R. E. Davies, E. R. Pike, “Super-resolution in confocal scanning microscope: III. The case of circular pupils,” Inv. Prob. 7, 655–674 (1991).
    [CrossRef]
  5. D. K. Hamilton, T. Wilson, C. J. R. Sheppard, “Experimental observations of depth-discrimination properties of scanning microscopes,” Opt. Lett. 6, 625–626 (1981).
    [CrossRef] [PubMed]
  6. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  7. D. K. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
    [CrossRef]
  8. G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
    [CrossRef]
  9. C. J. R. Sheppard, X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
    [CrossRef]
  10. G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
    [CrossRef]
  11. M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
    [CrossRef]
  12. S. Dobson, P. C. Sun, Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36, 4744–4748 (1997).
    [CrossRef] [PubMed]

1997 (1)

1994 (1)

S. G. Anderson, “Confocal laser microscopes see a wider field of application,” Laser Focus World 30(2), 83–86 (1994).

1991 (1)

M. Bertero, P. Boccacci, R. E. Davies, E. R. Pike, “Super-resolution in confocal scanning microscope: III. The case of circular pupils,” Inv. Prob. 7, 655–674 (1991).
[CrossRef]

1988 (3)

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

C. J. R. Sheppard, X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
[CrossRef]

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

1984 (1)

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

1982 (1)

D. K. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

1981 (1)

Anderson, S. G.

S. G. Anderson, “Confocal laser microscopes see a wider field of application,” Laser Focus World 30(2), 83–86 (1994).

Bertero, M.

M. Bertero, P. Boccacci, R. E. Davies, E. R. Pike, “Super-resolution in confocal scanning microscope: III. The case of circular pupils,” Inv. Prob. 7, 655–674 (1991).
[CrossRef]

Boccacci, P.

M. Bertero, P. Boccacci, R. E. Davies, E. R. Pike, “Super-resolution in confocal scanning microscope: III. The case of circular pupils,” Inv. Prob. 7, 655–674 (1991).
[CrossRef]

Corle, T. R.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Davies, R. E.

M. Bertero, P. Boccacci, R. E. Davies, E. R. Pike, “Super-resolution in confocal scanning microscope: III. The case of circular pupils,” Inv. Prob. 7, 655–674 (1991).
[CrossRef]

Dobson, S.

Fainman, Y.

Hamilton, D. K.

Hutley, M. C.

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

Kino, G. S.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Mao, X. Q.

C. J. R. Sheppard, X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
[CrossRef]

Minsky, M.

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).

Molesini, G.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Pawley, J. B.

J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1989).

Pedrini, G.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Pike, E. R.

M. Bertero, P. Boccacci, R. E. Davies, E. R. Pike, “Super-resolution in confocal scanning microscope: III. The case of circular pupils,” Inv. Prob. 7, 655–674 (1991).
[CrossRef]

Poggi, P.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Quercioli, F.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Sheppard, C.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Sheppard, C. J. R.

Stevens, R. F.

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

Sun, P. C.

Wilson, T.

D. K. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

D. K. Hamilton, T. Wilson, C. J. R. Sheppard, “Experimental observations of depth-discrimination properties of scanning microscopes,” Opt. Lett. 6, 625–626 (1981).
[CrossRef] [PubMed]

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Xiao, G. Q.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Inv. Prob. (1)

M. Bertero, P. Boccacci, R. E. Davies, E. R. Pike, “Super-resolution in confocal scanning microscope: III. The case of circular pupils,” Inv. Prob. 7, 655–674 (1991).
[CrossRef]

J. Appl. Phys. (1)

D. K. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

J. Mod. Opt. (1)

C. J. R. Sheppard, X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
[CrossRef]

J. Phys. E (1)

M. C. Hutley, R. F. Stevens, “The use of a zone-plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1044 (1988).
[CrossRef]

Laser Focus World (1)

S. G. Anderson, “Confocal laser microscopes see a wider field of application,” Laser Focus World 30(2), 83–86 (1994).

Opt. Commun. (1)

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Opt. Lett. (1)

Other (3)

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).

J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of a CSCM with a diffractive lens.

Fig. 2
Fig. 2

Calibration lookup table for depth-to-pixel coding and sensitivity for row 240.

Fig. 3
Fig. 3

Plot of measured resolution versus number of integrated frames.

Fig. 4
Fig. 4

Experimentally acquired raw CCD image from the CSCM applied to a four-phase-level diffractive element sample.

Fig. 5
Fig. 5

Experimental depth-section profile measurement calculated for a four-phase-level diffractive element (from Fig. 4) at a CSCM resolution of 0.023 μm.

Fig. 6
Fig. 6

(a) Magnified photograph of a machined, metal bearing. (b) Experimental measurement of a bearing where concatenated images taken by the CSCM are used.

Tables (1)

Tables Icon

Table 1 Comparison of Profile Measurements of a Four-Phase-Level Diffractive Element (from Fig. 4) using CSCM, Dektak, and Zyco Systems

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ f λ Δ λ = f λ - f λ c λ - λ c - f λ c λ c ,
Δ z λ Δ λ = f MO f coupling 2 Δ f λ Δ λ - f MO f coupling 2 f λ c λ c ,
Δ x λ Δ λ = F FT ν 0 ,
Δ z λ Δ x λ - 1 F FT ν 0 f MO f coupling 2 f λ c λ c .
Δ Z - 1 F FT ν 0 f MO f coupling 2 f λ c λ c Δ X ,

Metrics