Abstract

Based on the Jones matrix representation of twisted nematic liquid crystals (LC’s), we have carried out a theoretical analysis of the polarization properties of inversely twisted nematic (ITN) LC gratings. Some interesting polarization behaviors are expected in the ITN LC grating. When a linearly polarized light parallel or perpendicular to the grating direction is incident on the ITN LC grating, the diffracted light in the 0th order is linearly polarized with the same polarization direction of incident light, while the diffracted light in high orders is linearly polarized perpendicular to that of incident light. Using a multirubbing alignment technique, we have practically prepared an ITN LC grating with ±45° inversely twisted structures. The experimental investigations of the optical characteristics of the ITN LC grating demonstrate agreement with theoretical expectations.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Murai, “Electro-optic properties of liquid crystal phase gratings and their simulation using a homogeneous alignment model,” Liq. Cryst. 15, 627–642 (1993).
    [CrossRef]
  2. M. W. Fritsch, C. Kohler, G. Haas, H. Wohler, D. A. Mlynski, “Diffraction properties of rectangular phase gratings in a liquid crystal phase modulator,” Mol. Cryst. Liq. Cryst. 198, 1–14 (1991).
    [CrossRef]
  3. G. P. Nordin, J. H. Kulick, R. G. Lindquist, P. J. Nasiatka, M. W. Jones, M. Friends, S. T. Kowel, “Liquid crystal-on-silicon implementation of the partial pixel three-dimensional display architecture,” Appl. Opt. 34, 3756–3763 (1995).
    [CrossRef] [PubMed]
  4. S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal gratings,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994).
    [CrossRef]
  5. B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
    [CrossRef]
  6. W. M. Gibbons, S. T. Sun, “Optically generated liquid crystal grating,” Appl. Phys. Lett. 65, 2542–2544 (1994).
    [CrossRef]
  7. J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
    [CrossRef]
  8. T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystal cells as diffractive optical elements,” in Organic Thin Films, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 160–161.
  9. T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystals: physics and applications,” Pure Appl. Opt. 5, 595–602 (1996).
    [CrossRef]
  10. P. J. Bos, J. Chen, J. W. Doane, B. Smith, C. Holton, W. Glenn, “An optically active diffractive device for a high-efficiency light valve,” in Technical Digest, Society for Information Display International Symposium, Orlando, Fla. (Society for Information Display, Santa Ana, Calif., 1995), Vol. 26, pp. 601–604.
  11. L. M. Titus, P. J. Bos, C. Holton, W. Glenn, “Efficient polarization-independent reflective liquid-crystal phase gratings,” in Technical Digest, Society for Information Display International Symposium, Boston (Society for Information Display, Santa Ana, Calif., 1997), Vol. 28, pp. 769–772.
  12. M. Lu, K. H. Yang, “LC phase-gratings for reflective spatial light modulators,” in Conference Record of the 1997 International Display Research Conference, Toronto (Society for Information Display, Santa Ana, Calif., 1997), pp. 167–170.
  13. A. R. Tanguay, P. Chavel, T. C. Strand, C. S. Wu, “Polarization properties of the variable-grating-mode liquid-crystal device,” Opt. Lett. 9, 174–176 (1984).
    [CrossRef] [PubMed]
  14. K. A. Suresh, P. B. S. Kumar, G. S. Ranganath, “Optical diffraction in twisted liquid-crystalline media-phase grating mode,” Liq. Cryst. 11, 73–82 (1992).
    [CrossRef]
  15. Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
    [CrossRef]
  16. Z. He, T. Nose, S. Sato, “Polarization modulation of a nematic liquid crystal grating,” in Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 328–331 (1996).
    [CrossRef]
  17. Z. He, T. Nose, S. Sato, “Polarization properties of a liquid crystal phase grating,” Mol. Cryst. Liq. Cryst. 301, 295–300 (1997).
    [CrossRef]
  18. Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twisted angle of a twisted nematic cell by measuring Stokes parameters,” Jpn. J. Appl. Phys. 36, 2760–2764 (1997).
    [CrossRef]
  19. Z. He, Y. Zhou, S. Sato, “A 2-dimensional Stokes parameter method for determination of cell thickness and twisted angle distributions in twisted nematic liquid crystal devices,” Jpn. J. Appl. Phys. 37, 1982–1988 (1998).
    [CrossRef]
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New Year, 1968), pp. 4–29.
  21. C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975).
    [CrossRef]

1998 (1)

Z. He, Y. Zhou, S. Sato, “A 2-dimensional Stokes parameter method for determination of cell thickness and twisted angle distributions in twisted nematic liquid crystal devices,” Jpn. J. Appl. Phys. 37, 1982–1988 (1998).
[CrossRef]

1997 (2)

Z. He, T. Nose, S. Sato, “Polarization properties of a liquid crystal phase grating,” Mol. Cryst. Liq. Cryst. 301, 295–300 (1997).
[CrossRef]

Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twisted angle of a twisted nematic cell by measuring Stokes parameters,” Jpn. J. Appl. Phys. 36, 2760–2764 (1997).
[CrossRef]

1996 (2)

Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
[CrossRef]

T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystals: physics and applications,” Pure Appl. Opt. 5, 595–602 (1996).
[CrossRef]

1995 (2)

1994 (2)

S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal gratings,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994).
[CrossRef]

W. M. Gibbons, S. T. Sun, “Optically generated liquid crystal grating,” Appl. Phys. Lett. 65, 2542–2544 (1994).
[CrossRef]

1993 (1)

H. Murai, “Electro-optic properties of liquid crystal phase gratings and their simulation using a homogeneous alignment model,” Liq. Cryst. 15, 627–642 (1993).
[CrossRef]

1992 (1)

K. A. Suresh, P. B. S. Kumar, G. S. Ranganath, “Optical diffraction in twisted liquid-crystalline media-phase grating mode,” Liq. Cryst. 11, 73–82 (1992).
[CrossRef]

1991 (1)

M. W. Fritsch, C. Kohler, G. Haas, H. Wohler, D. A. Mlynski, “Diffraction properties of rectangular phase gratings in a liquid crystal phase modulator,” Mol. Cryst. Liq. Cryst. 198, 1–14 (1991).
[CrossRef]

1984 (1)

1981 (1)

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
[CrossRef]

1975 (1)

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Bos, P. J.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

P. J. Bos, J. Chen, J. W. Doane, B. Smith, C. Holton, W. Glenn, “An optically active diffractive device for a high-efficiency light valve,” in Technical Digest, Society for Information Display International Symposium, Orlando, Fla. (Society for Information Display, Santa Ana, Calif., 1995), Vol. 26, pp. 601–604.

L. M. Titus, P. J. Bos, C. Holton, W. Glenn, “Efficient polarization-independent reflective liquid-crystal phase gratings,” in Technical Digest, Society for Information Display International Symposium, Boston (Society for Information Display, Santa Ana, Calif., 1997), Vol. 28, pp. 769–772.

Boswell, D.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
[CrossRef]

Chavel, P.

A. R. Tanguay, P. Chavel, T. C. Strand, C. S. Wu, “Polarization properties of the variable-grating-mode liquid-crystal device,” Opt. Lett. 9, 174–176 (1984).
[CrossRef] [PubMed]

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
[CrossRef]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

P. J. Bos, J. Chen, J. W. Doane, B. Smith, C. Holton, W. Glenn, “An optically active diffractive device for a high-efficiency light valve,” in Technical Digest, Society for Information Display International Symposium, Orlando, Fla. (Society for Information Display, Santa Ana, Calif., 1995), Vol. 26, pp. 601–604.

Doane, J. W.

P. J. Bos, J. Chen, J. W. Doane, B. Smith, C. Holton, W. Glenn, “An optically active diffractive device for a high-efficiency light valve,” in Technical Digest, Society for Information Display International Symposium, Orlando, Fla. (Society for Information Display, Santa Ana, Calif., 1995), Vol. 26, pp. 601–604.

Friends, M.

Fritsch, M. W.

M. W. Fritsch, C. Kohler, G. Haas, H. Wohler, D. A. Mlynski, “Diffraction properties of rectangular phase gratings in a liquid crystal phase modulator,” Mol. Cryst. Liq. Cryst. 198, 1–14 (1991).
[CrossRef]

Fukushima, S.

S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal gratings,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994).
[CrossRef]

Gibbons, W. M.

W. M. Gibbons, S. T. Sun, “Optically generated liquid crystal grating,” Appl. Phys. Lett. 65, 2542–2544 (1994).
[CrossRef]

Glenn, W.

P. J. Bos, J. Chen, J. W. Doane, B. Smith, C. Holton, W. Glenn, “An optically active diffractive device for a high-efficiency light valve,” in Technical Digest, Society for Information Display International Symposium, Orlando, Fla. (Society for Information Display, Santa Ana, Calif., 1995), Vol. 26, pp. 601–604.

L. M. Titus, P. J. Bos, C. Holton, W. Glenn, “Efficient polarization-independent reflective liquid-crystal phase gratings,” in Technical Digest, Society for Information Display International Symposium, Boston (Society for Information Display, Santa Ana, Calif., 1997), Vol. 28, pp. 769–772.

Gooch, C. H.

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New Year, 1968), pp. 4–29.

Haas, G.

M. W. Fritsch, C. Kohler, G. Haas, H. Wohler, D. A. Mlynski, “Diffraction properties of rectangular phase gratings in a liquid crystal phase modulator,” Mol. Cryst. Liq. Cryst. 198, 1–14 (1991).
[CrossRef]

He, Z.

Z. He, Y. Zhou, S. Sato, “A 2-dimensional Stokes parameter method for determination of cell thickness and twisted angle distributions in twisted nematic liquid crystal devices,” Jpn. J. Appl. Phys. 37, 1982–1988 (1998).
[CrossRef]

Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twisted angle of a twisted nematic cell by measuring Stokes parameters,” Jpn. J. Appl. Phys. 36, 2760–2764 (1997).
[CrossRef]

Z. He, T. Nose, S. Sato, “Polarization properties of a liquid crystal phase grating,” Mol. Cryst. Liq. Cryst. 301, 295–300 (1997).
[CrossRef]

Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
[CrossRef]

Z. He, T. Nose, S. Sato, “Polarization modulation of a nematic liquid crystal grating,” in Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 328–331 (1996).
[CrossRef]

Holton, C.

L. M. Titus, P. J. Bos, C. Holton, W. Glenn, “Efficient polarization-independent reflective liquid-crystal phase gratings,” in Technical Digest, Society for Information Display International Symposium, Boston (Society for Information Display, Santa Ana, Calif., 1997), Vol. 28, pp. 769–772.

P. J. Bos, J. Chen, J. W. Doane, B. Smith, C. Holton, W. Glenn, “An optically active diffractive device for a high-efficiency light valve,” in Technical Digest, Society for Information Display International Symposium, Orlando, Fla. (Society for Information Display, Santa Ana, Calif., 1995), Vol. 26, pp. 601–604.

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Jones, M. W.

Kohler, C.

M. W. Fritsch, C. Kohler, G. Haas, H. Wohler, D. A. Mlynski, “Diffraction properties of rectangular phase gratings in a liquid crystal phase modulator,” Mol. Cryst. Liq. Cryst. 198, 1–14 (1991).
[CrossRef]

Kosa, T.

T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystals: physics and applications,” Pure Appl. Opt. 5, 595–602 (1996).
[CrossRef]

T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystal cells as diffractive optical elements,” in Organic Thin Films, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 160–161.

Kowel, S. T.

Kulick, J. H.

Kumar, P. B. S.

K. A. Suresh, P. B. S. Kumar, G. S. Ranganath, “Optical diffraction in twisted liquid-crystalline media-phase grating mode,” Liq. Cryst. 11, 73–82 (1992).
[CrossRef]

Kurokawa, T.

S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal gratings,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994).
[CrossRef]

Lackner, A. M.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
[CrossRef]

Lindquist, R. G.

Lu, M.

M. Lu, K. H. Yang, “LC phase-gratings for reflective spatial light modulators,” in Conference Record of the 1997 International Display Research Conference, Toronto (Society for Information Display, Santa Ana, Calif., 1997), pp. 167–170.

Margerum, J. D.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
[CrossRef]

Mlynski, D. A.

M. W. Fritsch, C. Kohler, G. Haas, H. Wohler, D. A. Mlynski, “Diffraction properties of rectangular phase gratings in a liquid crystal phase modulator,” Mol. Cryst. Liq. Cryst. 198, 1–14 (1991).
[CrossRef]

Murai, H.

H. Murai, “Electro-optic properties of liquid crystal phase gratings and their simulation using a homogeneous alignment model,” Liq. Cryst. 15, 627–642 (1993).
[CrossRef]

Nasiatka, P. J.

Nordin, G. P.

Nose, T.

Z. He, T. Nose, S. Sato, “Polarization properties of a liquid crystal phase grating,” Mol. Cryst. Liq. Cryst. 301, 295–300 (1997).
[CrossRef]

Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
[CrossRef]

Z. He, T. Nose, S. Sato, “Polarization modulation of a nematic liquid crystal grating,” in Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 328–331 (1996).
[CrossRef]

Palffy-Muhoray, P.

T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystals: physics and applications,” Pure Appl. Opt. 5, 595–602 (1996).
[CrossRef]

T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystal cells as diffractive optical elements,” in Organic Thin Films, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 160–161.

Ranganath, G. S.

K. A. Suresh, P. B. S. Kumar, G. S. Ranganath, “Optical diffraction in twisted liquid-crystalline media-phase grating mode,” Liq. Cryst. 11, 73–82 (1992).
[CrossRef]

Sato, S.

Z. He, Y. Zhou, S. Sato, “A 2-dimensional Stokes parameter method for determination of cell thickness and twisted angle distributions in twisted nematic liquid crystal devices,” Jpn. J. Appl. Phys. 37, 1982–1988 (1998).
[CrossRef]

Z. He, T. Nose, S. Sato, “Polarization properties of a liquid crystal phase grating,” Mol. Cryst. Liq. Cryst. 301, 295–300 (1997).
[CrossRef]

Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twisted angle of a twisted nematic cell by measuring Stokes parameters,” Jpn. J. Appl. Phys. 36, 2760–2764 (1997).
[CrossRef]

Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
[CrossRef]

Z. He, T. Nose, S. Sato, “Polarization modulation of a nematic liquid crystal grating,” in Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 328–331 (1996).
[CrossRef]

Sawchuk, A. A.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
[CrossRef]

Smith, B.

P. J. Bos, J. Chen, J. W. Doane, B. Smith, C. Holton, W. Glenn, “An optically active diffractive device for a high-efficiency light valve,” in Technical Digest, Society for Information Display International Symposium, Orlando, Fla. (Society for Information Display, Santa Ana, Calif., 1995), Vol. 26, pp. 601–604.

Soffer, B. H.

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
[CrossRef]

Strand, T. C.

A. R. Tanguay, P. Chavel, T. C. Strand, C. S. Wu, “Polarization properties of the variable-grating-mode liquid-crystal device,” Opt. Lett. 9, 174–176 (1984).
[CrossRef] [PubMed]

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
[CrossRef]

Sun, S. T.

W. M. Gibbons, S. T. Sun, “Optically generated liquid crystal grating,” Appl. Phys. Lett. 65, 2542–2544 (1994).
[CrossRef]

Suresh, K. A.

K. A. Suresh, P. B. S. Kumar, G. S. Ranganath, “Optical diffraction in twisted liquid-crystalline media-phase grating mode,” Liq. Cryst. 11, 73–82 (1992).
[CrossRef]

Tanguay, A. R.

A. R. Tanguay, P. Chavel, T. C. Strand, C. S. Wu, “Polarization properties of the variable-grating-mode liquid-crystal device,” Opt. Lett. 9, 174–176 (1984).
[CrossRef] [PubMed]

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
[CrossRef]

Tarry, H. A.

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Titus, L. M.

L. M. Titus, P. J. Bos, C. Holton, W. Glenn, “Efficient polarization-independent reflective liquid-crystal phase gratings,” in Technical Digest, Society for Information Display International Symposium, Boston (Society for Information Display, Santa Ana, Calif., 1997), Vol. 28, pp. 769–772.

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Wohler, H.

M. W. Fritsch, C. Kohler, G. Haas, H. Wohler, D. A. Mlynski, “Diffraction properties of rectangular phase gratings in a liquid crystal phase modulator,” Mol. Cryst. Liq. Cryst. 198, 1–14 (1991).
[CrossRef]

Wu, C. S.

Yang, K. H.

M. Lu, K. H. Yang, “LC phase-gratings for reflective spatial light modulators,” in Conference Record of the 1997 International Display Research Conference, Toronto (Society for Information Display, Santa Ana, Calif., 1997), pp. 167–170.

Zhou, Y.

Z. He, Y. Zhou, S. Sato, “A 2-dimensional Stokes parameter method for determination of cell thickness and twisted angle distributions in twisted nematic liquid crystal devices,” Jpn. J. Appl. Phys. 37, 1982–1988 (1998).
[CrossRef]

Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twisted angle of a twisted nematic cell by measuring Stokes parameters,” Jpn. J. Appl. Phys. 36, 2760–2764 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. M. Gibbons, S. T. Sun, “Optically generated liquid crystal grating,” Appl. Phys. Lett. 65, 2542–2544 (1994).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

J. Phys. D (1)

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Jpn. J. Appl. Phys. (4)

Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996).
[CrossRef]

Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twisted angle of a twisted nematic cell by measuring Stokes parameters,” Jpn. J. Appl. Phys. 36, 2760–2764 (1997).
[CrossRef]

Z. He, Y. Zhou, S. Sato, “A 2-dimensional Stokes parameter method for determination of cell thickness and twisted angle distributions in twisted nematic liquid crystal devices,” Jpn. J. Appl. Phys. 37, 1982–1988 (1998).
[CrossRef]

S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal gratings,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994).
[CrossRef]

Liq. Cryst. (2)

H. Murai, “Electro-optic properties of liquid crystal phase gratings and their simulation using a homogeneous alignment model,” Liq. Cryst. 15, 627–642 (1993).
[CrossRef]

K. A. Suresh, P. B. S. Kumar, G. S. Ranganath, “Optical diffraction in twisted liquid-crystalline media-phase grating mode,” Liq. Cryst. 11, 73–82 (1992).
[CrossRef]

Mol. Cryst. Liq. Cryst. (3)

M. W. Fritsch, C. Kohler, G. Haas, H. Wohler, D. A. Mlynski, “Diffraction properties of rectangular phase gratings in a liquid crystal phase modulator,” Mol. Cryst. Liq. Cryst. 198, 1–14 (1991).
[CrossRef]

B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981).
[CrossRef]

Z. He, T. Nose, S. Sato, “Polarization properties of a liquid crystal phase grating,” Mol. Cryst. Liq. Cryst. 301, 295–300 (1997).
[CrossRef]

Opt. Lett. (1)

Pure Appl. Opt. (1)

T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystals: physics and applications,” Pure Appl. Opt. 5, 595–602 (1996).
[CrossRef]

Other (6)

P. J. Bos, J. Chen, J. W. Doane, B. Smith, C. Holton, W. Glenn, “An optically active diffractive device for a high-efficiency light valve,” in Technical Digest, Society for Information Display International Symposium, Orlando, Fla. (Society for Information Display, Santa Ana, Calif., 1995), Vol. 26, pp. 601–604.

L. M. Titus, P. J. Bos, C. Holton, W. Glenn, “Efficient polarization-independent reflective liquid-crystal phase gratings,” in Technical Digest, Society for Information Display International Symposium, Boston (Society for Information Display, Santa Ana, Calif., 1997), Vol. 28, pp. 769–772.

M. Lu, K. H. Yang, “LC phase-gratings for reflective spatial light modulators,” in Conference Record of the 1997 International Display Research Conference, Toronto (Society for Information Display, Santa Ana, Calif., 1997), pp. 167–170.

T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystal cells as diffractive optical elements,” in Organic Thin Films, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 160–161.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New Year, 1968), pp. 4–29.

Z. He, T. Nose, S. Sato, “Polarization modulation of a nematic liquid crystal grating,” in Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 328–331 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Model of the ITN LC grating used in this study.

Fig. 2
Fig. 2

Diffraction light intensity of the 0th order as a function of twist angle and cell thickness.

Fig. 3
Fig. 3

Stokes parameters (a) S 1,(b) S2, and (c) S 3 of diffracted light in the 0th order as a function of cell thickness when the twist angle is 45°.

Fig. 4
Fig. 4

Stokes parameters (a) S 1, (b) S2, and (c) S 3 of diffracted light in the 0th order as a function of twist angle when the cell thickness is 10.35 μm.

Fig. 5
Fig. 5

Diffraction light intensity of the 1st order as a function of twist angle and cell thickness.

Fig. 6
Fig. 6

Stokes parameters (a) S 1, (b) S2, and (c) S 3 of diffracted light in the ±1st order as a function of cell thickness when the twist angle is 45°.

Fig. 7
Fig. 7

Stokes parameters (a) S 1, (b) S2, and (c) S 3 of diffracted light in the ±1st order as a function of twist angle when the cell thickness is 10.35 μm.

Fig. 8
Fig. 8

Structure of the ITN LC grating: PVA, polyvinyl alcohol.

Fig. 9
Fig. 9

Four transmitted light intensity images in quantitative determination of the inversely twisted structure when the 2DSPM is used.

Fig. 10
Fig. 10

Optical setup for investigation of polarization and diffraction properties of the ITN LC grating.

Fig. 11
Fig. 11

Polarization-independent diffraction properties of the ITN LC grating.

Fig. 12
Fig. 12

Diffraction patterns of the ITN LC grating with linearly polarized incident light parallel to the x axis.

Tables (2)

Tables Icon

Table 1 Experimental Stokes Parameters of Diffracted Light under Various Polarized Incident Light

Tables Icon

Table 2 Theoretical Stokes Parameters of Diffracted Light under Various Polarized Incident Light

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A B C D = a * b * - b a rect x - p / 4 p / 2 + a * - b * b a rect x + p / 4 p / 2   *   1 p comb x p ,
a = 1 1 + u 2 1 / 2 sin   θ   sin 1 + u 2 1 / 2 θ + cos   θ   cos 1 + u 2 1 / 2 θ + j   u 1 + u 2 1 / 2 cos   θ   sin 1 + u 2 1 / 2 θ , b = 1 1 + u 2 1 / 2 cos   θ   sin 1 + u 2 1 / 2 θ - sin   θ   cos 1 + u 2 1 / 2 θ + j   u 1 + u 2 1 / 2 sin   θ   sin 1 + u 2 1 / 2 θ ,
w = n e n o 2 - 1 , u = π d λ θ n e 1 + w   sin 2   θ s 1 / 2 - n o ,
A n = a *   sinc n 2 cos π 2   n , B n = - jb *   sinc n 2 sin π 2   n , C n = jb   sinc n 2 sin π 2   n , D n = a   sinc n 2 cos π 2   n .
E x E y = a * 0 0 a E x in E y in .
I 0 th = 1 1 + u 2 1 / 2 sin   θ   sin 1 + u 2 1 / 2 θ + cos   θ   cos 1 + u 2 1 / 2 θ 2 + u 2 1 + u 2 cos 2   θ   sin 2 1 + u 2 1 / 2 θ .
θ = π / 2 ,   1 + u 2 1 / 2 θ = k π ,
E x E y = ± j   sinc 2 m + 1 2 0 - b * b 0 E x in E y in ,
I ± 1 st = sinc 2 ½ 1 1 + u 2 1 / 2 cos   θ   sin 1 + u 2 1 / 2 θ - sin   θ   cos 1 + u 2 1 / 2 θ 2 + u 2 1 + u 2 sin 2   θ   sin 2 1 + u 2 1 / 2 θ .

Metrics