Abstract

A two-dimensional in-plane displacement-sensitive electronic speckle pattern interferometer has been developed. With a fiber coupler with one input and four outputs, two sets of dual-beam interferometric configurations in orthogonal directions are constructed to determine in-plane displacements completely. When a CCD camera with a zoom lens is located at an adequate distance from the specimen, a testing area ranging from 1.4 mm × 1.0 mm to 30.0 mm × 24.0 mm can be examined in quasi-real-time. Incorporated with the hole-drilling technique, it has currently been demonstrated in residual stress measurements. One application is for determining the residual stress of a thick cylinder consisting of two concentric circular tubes with interference fit. The other is for analyzing the residual stress distribution of a recordable optical compact disc. A simple approach to interpreting the values of residual stresses from the displacement contours is presented.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Ennos, “Speckle interferometry,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1978), Vol. 16, Chap. 4, pp. 235–288.
    [CrossRef]
  2. R. K. Erf, ed., Speckle Metrology (Academic, New York, 1978).
  3. R. Jones, C. Wykes, Holographic and Speckle Interferometry, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1989).
  4. R. S. Sirohi, ed., Selected Papers on Speckle Metrology, SPIE Milestone Series 35 (SPIE Optical Engineering Press, Bellingham, Wash., 1991).
  5. R. S. Sirohi, ed., Speckle Metrology (Marcel Dekker, New York, 1993).
  6. V. P. Shchepinov, V. S. Pisarev, Strain and Stress Analysis by Holographic and Speckle Interferometry (Wiley, New York, 1996).
  7. J. N. Butters, J. A. Leendertz, “Holographic and video techniques applied to engineering measurements,” Meas. Control 4, 349–354 (1971).
  8. D. Denby, J. A. Leendertz, “Plane-surface strain examination by speckle pattern interferometry using electronic processing,” J. Strain Anal. 9, 17–25 (1974).
    [CrossRef]
  9. A. Macovski, S. D. Ramsey, L. F. Schaefer, “Time-lapse interferometry and contouring using television systems,” Appl. Opt. 10, 2722–2727 (1971).
    [CrossRef] [PubMed]
  10. J. T. Malmo, O. J. Løkberg, G. A. Slettemoen, “Interferometric testing at very high temperatures by TV holography (ESPI),” Exp. Mech. 28, 315–321 (1988).
    [CrossRef]
  11. S. Takemoto, “Holography and electronic speckle pattern interferometry in geophysics,” Opt. Lasers Eng. 24, 145–160 (1996).
    [CrossRef]
  12. P. Meinlschmidt, K. D. Hinsch, R. S. Sirohi, eds., Selected Papers on Electronic Speckle Pattern Interferometry: Principles and Practice, SPIE Milestone Series 132 (SPIE Optical Engineering Press, Bellingham, Wash., 1996).
  13. C. A. Sciammarella, G. Bhat, A. Albertazzi, “Measurement of strains by means of electro-optics holography,” in Applications of Optical Engineering, R. P. Guzik, ed., Proc. SPIE1396, 143–154 (1991).
  14. A. K. Maji, J. Wang, “Fracture mechanics of a tension-shear macrocrack in rocks,” Exp. Mech. 32, 190–196 (1992).
    [CrossRef]
  15. T. Flemming, M. Hertwig, R. Usinger, “Speckle interferometry for highly localized displacement fields,” Meas. Sci. Technol. 4, 820–825 (1993).
    [CrossRef]
  16. G. K. Bhat, “Nondestructive evaluation of materials at high temperatures using electro-optic holography,” Opt. Laser Technol. 28, 157–162 (1996).
    [CrossRef]
  17. A. J. Moore, J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024–1030 (1990).
    [CrossRef]
  18. A. J. Moore, J. R. Tyrer, “Two-dimensional strain measurement with ESPI,” Opt. Lasers Eng. 24, 381–402 (1996).
    [CrossRef]
  19. Z. Jia, S. P. Shah, “Two-dimensional electronic speckle pattern interferometry and concrete-fracture processes,” Exp. Mech. 34, 262–270 (1994).
    [CrossRef]
  20. J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E 3, 214–218 (1970).
    [CrossRef]
  21. D. Paoletti, G. S. Spagnolo, “Application of fibre optic digital speckle interferometry to mural painting diagnostics,” Meas. Sci. Technol. 4, 614–618 (1993).
    [CrossRef]
  22. K. E. Perry, “Delamination and damage studies of composite materials using phase-shifting interferometry,” Opt. Lasers Eng. 24, 467–483 (1996).
    [CrossRef]
  23. A. McDonach, J. McKelvie, P. MacKenzie, C. A. Walker, “Improved moiré interferometry and applications in fracture mechanics, residual stresses and damaged composites,” Exp. Tech. 7, 20–24 (1983).
    [CrossRef]
  24. G. Nicoletto, “Moiré interferometry determination of residual stresses in the presence of gradients,” Exp. Mech. 31, 252–256 (1991).
    [CrossRef]
  25. A. A. Antonov, “Inspecting the level of residual stresses in welded joints by laser interferometry,” Weld. Prod. 30, 29–31 (1983).
  26. D. V. Nelson, J. T. McCrickerd, “Residual-stress determination through combined use of holographic interferometry and blind-hole drilling,” Exp. Mech. 26, 371–378 (1986).
    [CrossRef]
  27. A. Makino, D. Nelson, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part I: Theory,” Exp. Mech. 34, 66–78 (1994).
    [CrossRef]
  28. D. Nelson, E. Fuchs, A. Makino, D. Williams, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part II: Experiments,” Exp. Mech. 34, 79–88 (1994).
    [CrossRef]
  29. M. Y. Y. Hung, K. W. Long, X. Zhang, J. D. Hovanesian, “Fast detection of residual stress by shearography,” in Industrial Laser Interferometry II, M. Y. Y. Hung, R. Pryputniewicz, eds., Proc. SPIE955, 26–36 (1988).
    [CrossRef]
  30. S.-T. Lin, C.-T. Hsieh, C.-P. Hu, “Two holographic blind-hole methods for measuring residual stresses,” Exp. Mech. 34, 141–147 (1994).
    [CrossRef]
  31. S. T. Lin, C. T. Hsieh, C. K. Lee, “Full field phase-shifting holographic blind-hole technique for in-plane residual stress determination,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 226–237 (1995).
  32. C. T. Hsieh, S. T. Lin, C. K. Lee, “In-plane residual stress measurement with one axisymmetric phase-shifting holographic blind-hole fringe pattern,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 238–248 (1995).
  33. M. J. Pechersky, R. F. Miller, C. S. Vikram, “Residual stress measurements with laser speckle correlation interferometry and local heat treating,” Opt. Eng. 34, 2964–2971 (1995).
    [CrossRef]
  34. F. M. Furgiuele, L. Pagnotta, A. Poggialini, “Measuring residual stresses by hole drilling and coherent optics techniques: a numerical calibration,” J. Eng. Mater. Technol. 113, 41–50 (1991).
    [CrossRef]
  35. J. Zhang, “Two-dimensional in-plane electronic speckle pattern interferometer and its application to residual stress determination,” Opt. Eng. 37, 2402–2409 (1998).
    [CrossRef]
  36. A. Makino, Residual Stress Measurement using the Holographic Hole Drilling Technique, Ph.D. dissertation (Stanford University, Stanford, Calif., 1994).
  37. S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).

1998

J. Zhang, “Two-dimensional in-plane electronic speckle pattern interferometer and its application to residual stress determination,” Opt. Eng. 37, 2402–2409 (1998).
[CrossRef]

1996

S. Takemoto, “Holography and electronic speckle pattern interferometry in geophysics,” Opt. Lasers Eng. 24, 145–160 (1996).
[CrossRef]

G. K. Bhat, “Nondestructive evaluation of materials at high temperatures using electro-optic holography,” Opt. Laser Technol. 28, 157–162 (1996).
[CrossRef]

A. J. Moore, J. R. Tyrer, “Two-dimensional strain measurement with ESPI,” Opt. Lasers Eng. 24, 381–402 (1996).
[CrossRef]

K. E. Perry, “Delamination and damage studies of composite materials using phase-shifting interferometry,” Opt. Lasers Eng. 24, 467–483 (1996).
[CrossRef]

1995

M. J. Pechersky, R. F. Miller, C. S. Vikram, “Residual stress measurements with laser speckle correlation interferometry and local heat treating,” Opt. Eng. 34, 2964–2971 (1995).
[CrossRef]

1994

A. Makino, D. Nelson, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part I: Theory,” Exp. Mech. 34, 66–78 (1994).
[CrossRef]

D. Nelson, E. Fuchs, A. Makino, D. Williams, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part II: Experiments,” Exp. Mech. 34, 79–88 (1994).
[CrossRef]

S.-T. Lin, C.-T. Hsieh, C.-P. Hu, “Two holographic blind-hole methods for measuring residual stresses,” Exp. Mech. 34, 141–147 (1994).
[CrossRef]

Z. Jia, S. P. Shah, “Two-dimensional electronic speckle pattern interferometry and concrete-fracture processes,” Exp. Mech. 34, 262–270 (1994).
[CrossRef]

1993

T. Flemming, M. Hertwig, R. Usinger, “Speckle interferometry for highly localized displacement fields,” Meas. Sci. Technol. 4, 820–825 (1993).
[CrossRef]

D. Paoletti, G. S. Spagnolo, “Application of fibre optic digital speckle interferometry to mural painting diagnostics,” Meas. Sci. Technol. 4, 614–618 (1993).
[CrossRef]

1992

A. K. Maji, J. Wang, “Fracture mechanics of a tension-shear macrocrack in rocks,” Exp. Mech. 32, 190–196 (1992).
[CrossRef]

1991

G. Nicoletto, “Moiré interferometry determination of residual stresses in the presence of gradients,” Exp. Mech. 31, 252–256 (1991).
[CrossRef]

F. M. Furgiuele, L. Pagnotta, A. Poggialini, “Measuring residual stresses by hole drilling and coherent optics techniques: a numerical calibration,” J. Eng. Mater. Technol. 113, 41–50 (1991).
[CrossRef]

1990

A. J. Moore, J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024–1030 (1990).
[CrossRef]

1988

J. T. Malmo, O. J. Løkberg, G. A. Slettemoen, “Interferometric testing at very high temperatures by TV holography (ESPI),” Exp. Mech. 28, 315–321 (1988).
[CrossRef]

1986

D. V. Nelson, J. T. McCrickerd, “Residual-stress determination through combined use of holographic interferometry and blind-hole drilling,” Exp. Mech. 26, 371–378 (1986).
[CrossRef]

1983

A. A. Antonov, “Inspecting the level of residual stresses in welded joints by laser interferometry,” Weld. Prod. 30, 29–31 (1983).

A. McDonach, J. McKelvie, P. MacKenzie, C. A. Walker, “Improved moiré interferometry and applications in fracture mechanics, residual stresses and damaged composites,” Exp. Tech. 7, 20–24 (1983).
[CrossRef]

1974

D. Denby, J. A. Leendertz, “Plane-surface strain examination by speckle pattern interferometry using electronic processing,” J. Strain Anal. 9, 17–25 (1974).
[CrossRef]

1971

A. Macovski, S. D. Ramsey, L. F. Schaefer, “Time-lapse interferometry and contouring using television systems,” Appl. Opt. 10, 2722–2727 (1971).
[CrossRef] [PubMed]

J. N. Butters, J. A. Leendertz, “Holographic and video techniques applied to engineering measurements,” Meas. Control 4, 349–354 (1971).

1970

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E 3, 214–218 (1970).
[CrossRef]

Albertazzi, A.

C. A. Sciammarella, G. Bhat, A. Albertazzi, “Measurement of strains by means of electro-optics holography,” in Applications of Optical Engineering, R. P. Guzik, ed., Proc. SPIE1396, 143–154 (1991).

Antonov, A. A.

A. A. Antonov, “Inspecting the level of residual stresses in welded joints by laser interferometry,” Weld. Prod. 30, 29–31 (1983).

Bhat, G.

C. A. Sciammarella, G. Bhat, A. Albertazzi, “Measurement of strains by means of electro-optics holography,” in Applications of Optical Engineering, R. P. Guzik, ed., Proc. SPIE1396, 143–154 (1991).

Bhat, G. K.

G. K. Bhat, “Nondestructive evaluation of materials at high temperatures using electro-optic holography,” Opt. Laser Technol. 28, 157–162 (1996).
[CrossRef]

Butters, J. N.

J. N. Butters, J. A. Leendertz, “Holographic and video techniques applied to engineering measurements,” Meas. Control 4, 349–354 (1971).

Denby, D.

D. Denby, J. A. Leendertz, “Plane-surface strain examination by speckle pattern interferometry using electronic processing,” J. Strain Anal. 9, 17–25 (1974).
[CrossRef]

Ennos, A. E.

A. E. Ennos, “Speckle interferometry,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1978), Vol. 16, Chap. 4, pp. 235–288.
[CrossRef]

Flemming, T.

T. Flemming, M. Hertwig, R. Usinger, “Speckle interferometry for highly localized displacement fields,” Meas. Sci. Technol. 4, 820–825 (1993).
[CrossRef]

Fuchs, E.

D. Nelson, E. Fuchs, A. Makino, D. Williams, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part II: Experiments,” Exp. Mech. 34, 79–88 (1994).
[CrossRef]

Furgiuele, F. M.

F. M. Furgiuele, L. Pagnotta, A. Poggialini, “Measuring residual stresses by hole drilling and coherent optics techniques: a numerical calibration,” J. Eng. Mater. Technol. 113, 41–50 (1991).
[CrossRef]

Goodier, J. N.

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).

Hertwig, M.

T. Flemming, M. Hertwig, R. Usinger, “Speckle interferometry for highly localized displacement fields,” Meas. Sci. Technol. 4, 820–825 (1993).
[CrossRef]

Hovanesian, J. D.

M. Y. Y. Hung, K. W. Long, X. Zhang, J. D. Hovanesian, “Fast detection of residual stress by shearography,” in Industrial Laser Interferometry II, M. Y. Y. Hung, R. Pryputniewicz, eds., Proc. SPIE955, 26–36 (1988).
[CrossRef]

Hsieh, C. T.

S. T. Lin, C. T. Hsieh, C. K. Lee, “Full field phase-shifting holographic blind-hole technique for in-plane residual stress determination,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 226–237 (1995).

C. T. Hsieh, S. T. Lin, C. K. Lee, “In-plane residual stress measurement with one axisymmetric phase-shifting holographic blind-hole fringe pattern,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 238–248 (1995).

Hsieh, C.-T.

S.-T. Lin, C.-T. Hsieh, C.-P. Hu, “Two holographic blind-hole methods for measuring residual stresses,” Exp. Mech. 34, 141–147 (1994).
[CrossRef]

Hu, C.-P.

S.-T. Lin, C.-T. Hsieh, C.-P. Hu, “Two holographic blind-hole methods for measuring residual stresses,” Exp. Mech. 34, 141–147 (1994).
[CrossRef]

Hung, M. Y. Y.

M. Y. Y. Hung, K. W. Long, X. Zhang, J. D. Hovanesian, “Fast detection of residual stress by shearography,” in Industrial Laser Interferometry II, M. Y. Y. Hung, R. Pryputniewicz, eds., Proc. SPIE955, 26–36 (1988).
[CrossRef]

Jia, Z.

Z. Jia, S. P. Shah, “Two-dimensional electronic speckle pattern interferometry and concrete-fracture processes,” Exp. Mech. 34, 262–270 (1994).
[CrossRef]

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Interferometry, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1989).

Lee, C. K.

S. T. Lin, C. T. Hsieh, C. K. Lee, “Full field phase-shifting holographic blind-hole technique for in-plane residual stress determination,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 226–237 (1995).

C. T. Hsieh, S. T. Lin, C. K. Lee, “In-plane residual stress measurement with one axisymmetric phase-shifting holographic blind-hole fringe pattern,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 238–248 (1995).

Leendertz, J. A.

D. Denby, J. A. Leendertz, “Plane-surface strain examination by speckle pattern interferometry using electronic processing,” J. Strain Anal. 9, 17–25 (1974).
[CrossRef]

J. N. Butters, J. A. Leendertz, “Holographic and video techniques applied to engineering measurements,” Meas. Control 4, 349–354 (1971).

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E 3, 214–218 (1970).
[CrossRef]

Lin, S. T.

C. T. Hsieh, S. T. Lin, C. K. Lee, “In-plane residual stress measurement with one axisymmetric phase-shifting holographic blind-hole fringe pattern,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 238–248 (1995).

S. T. Lin, C. T. Hsieh, C. K. Lee, “Full field phase-shifting holographic blind-hole technique for in-plane residual stress determination,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 226–237 (1995).

Lin, S.-T.

S.-T. Lin, C.-T. Hsieh, C.-P. Hu, “Two holographic blind-hole methods for measuring residual stresses,” Exp. Mech. 34, 141–147 (1994).
[CrossRef]

Løkberg, O. J.

J. T. Malmo, O. J. Løkberg, G. A. Slettemoen, “Interferometric testing at very high temperatures by TV holography (ESPI),” Exp. Mech. 28, 315–321 (1988).
[CrossRef]

Long, K. W.

M. Y. Y. Hung, K. W. Long, X. Zhang, J. D. Hovanesian, “Fast detection of residual stress by shearography,” in Industrial Laser Interferometry II, M. Y. Y. Hung, R. Pryputniewicz, eds., Proc. SPIE955, 26–36 (1988).
[CrossRef]

MacKenzie, P.

A. McDonach, J. McKelvie, P. MacKenzie, C. A. Walker, “Improved moiré interferometry and applications in fracture mechanics, residual stresses and damaged composites,” Exp. Tech. 7, 20–24 (1983).
[CrossRef]

Macovski, A.

Maji, A. K.

A. K. Maji, J. Wang, “Fracture mechanics of a tension-shear macrocrack in rocks,” Exp. Mech. 32, 190–196 (1992).
[CrossRef]

Makino, A.

D. Nelson, E. Fuchs, A. Makino, D. Williams, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part II: Experiments,” Exp. Mech. 34, 79–88 (1994).
[CrossRef]

A. Makino, D. Nelson, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part I: Theory,” Exp. Mech. 34, 66–78 (1994).
[CrossRef]

A. Makino, Residual Stress Measurement using the Holographic Hole Drilling Technique, Ph.D. dissertation (Stanford University, Stanford, Calif., 1994).

Malmo, J. T.

J. T. Malmo, O. J. Løkberg, G. A. Slettemoen, “Interferometric testing at very high temperatures by TV holography (ESPI),” Exp. Mech. 28, 315–321 (1988).
[CrossRef]

McCrickerd, J. T.

D. V. Nelson, J. T. McCrickerd, “Residual-stress determination through combined use of holographic interferometry and blind-hole drilling,” Exp. Mech. 26, 371–378 (1986).
[CrossRef]

McDonach, A.

A. McDonach, J. McKelvie, P. MacKenzie, C. A. Walker, “Improved moiré interferometry and applications in fracture mechanics, residual stresses and damaged composites,” Exp. Tech. 7, 20–24 (1983).
[CrossRef]

McKelvie, J.

A. McDonach, J. McKelvie, P. MacKenzie, C. A. Walker, “Improved moiré interferometry and applications in fracture mechanics, residual stresses and damaged composites,” Exp. Tech. 7, 20–24 (1983).
[CrossRef]

Miller, R. F.

M. J. Pechersky, R. F. Miller, C. S. Vikram, “Residual stress measurements with laser speckle correlation interferometry and local heat treating,” Opt. Eng. 34, 2964–2971 (1995).
[CrossRef]

Moore, A. J.

A. J. Moore, J. R. Tyrer, “Two-dimensional strain measurement with ESPI,” Opt. Lasers Eng. 24, 381–402 (1996).
[CrossRef]

A. J. Moore, J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024–1030 (1990).
[CrossRef]

Nelson, D.

A. Makino, D. Nelson, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part I: Theory,” Exp. Mech. 34, 66–78 (1994).
[CrossRef]

D. Nelson, E. Fuchs, A. Makino, D. Williams, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part II: Experiments,” Exp. Mech. 34, 79–88 (1994).
[CrossRef]

Nelson, D. V.

D. V. Nelson, J. T. McCrickerd, “Residual-stress determination through combined use of holographic interferometry and blind-hole drilling,” Exp. Mech. 26, 371–378 (1986).
[CrossRef]

Nicoletto, G.

G. Nicoletto, “Moiré interferometry determination of residual stresses in the presence of gradients,” Exp. Mech. 31, 252–256 (1991).
[CrossRef]

Pagnotta, L.

F. M. Furgiuele, L. Pagnotta, A. Poggialini, “Measuring residual stresses by hole drilling and coherent optics techniques: a numerical calibration,” J. Eng. Mater. Technol. 113, 41–50 (1991).
[CrossRef]

Paoletti, D.

D. Paoletti, G. S. Spagnolo, “Application of fibre optic digital speckle interferometry to mural painting diagnostics,” Meas. Sci. Technol. 4, 614–618 (1993).
[CrossRef]

Pechersky, M. J.

M. J. Pechersky, R. F. Miller, C. S. Vikram, “Residual stress measurements with laser speckle correlation interferometry and local heat treating,” Opt. Eng. 34, 2964–2971 (1995).
[CrossRef]

Perry, K. E.

K. E. Perry, “Delamination and damage studies of composite materials using phase-shifting interferometry,” Opt. Lasers Eng. 24, 467–483 (1996).
[CrossRef]

Pisarev, V. S.

V. P. Shchepinov, V. S. Pisarev, Strain and Stress Analysis by Holographic and Speckle Interferometry (Wiley, New York, 1996).

Poggialini, A.

F. M. Furgiuele, L. Pagnotta, A. Poggialini, “Measuring residual stresses by hole drilling and coherent optics techniques: a numerical calibration,” J. Eng. Mater. Technol. 113, 41–50 (1991).
[CrossRef]

Ramsey, S. D.

Schaefer, L. F.

Sciammarella, C. A.

C. A. Sciammarella, G. Bhat, A. Albertazzi, “Measurement of strains by means of electro-optics holography,” in Applications of Optical Engineering, R. P. Guzik, ed., Proc. SPIE1396, 143–154 (1991).

Shah, S. P.

Z. Jia, S. P. Shah, “Two-dimensional electronic speckle pattern interferometry and concrete-fracture processes,” Exp. Mech. 34, 262–270 (1994).
[CrossRef]

Shchepinov, V. P.

V. P. Shchepinov, V. S. Pisarev, Strain and Stress Analysis by Holographic and Speckle Interferometry (Wiley, New York, 1996).

Slettemoen, G. A.

J. T. Malmo, O. J. Løkberg, G. A. Slettemoen, “Interferometric testing at very high temperatures by TV holography (ESPI),” Exp. Mech. 28, 315–321 (1988).
[CrossRef]

Spagnolo, G. S.

D. Paoletti, G. S. Spagnolo, “Application of fibre optic digital speckle interferometry to mural painting diagnostics,” Meas. Sci. Technol. 4, 614–618 (1993).
[CrossRef]

Takemoto, S.

S. Takemoto, “Holography and electronic speckle pattern interferometry in geophysics,” Opt. Lasers Eng. 24, 145–160 (1996).
[CrossRef]

Timoshenko, S. P.

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).

Tyrer, J. R.

A. J. Moore, J. R. Tyrer, “Two-dimensional strain measurement with ESPI,” Opt. Lasers Eng. 24, 381–402 (1996).
[CrossRef]

A. J. Moore, J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024–1030 (1990).
[CrossRef]

Usinger, R.

T. Flemming, M. Hertwig, R. Usinger, “Speckle interferometry for highly localized displacement fields,” Meas. Sci. Technol. 4, 820–825 (1993).
[CrossRef]

Vikram, C. S.

M. J. Pechersky, R. F. Miller, C. S. Vikram, “Residual stress measurements with laser speckle correlation interferometry and local heat treating,” Opt. Eng. 34, 2964–2971 (1995).
[CrossRef]

Walker, C. A.

A. McDonach, J. McKelvie, P. MacKenzie, C. A. Walker, “Improved moiré interferometry and applications in fracture mechanics, residual stresses and damaged composites,” Exp. Tech. 7, 20–24 (1983).
[CrossRef]

Wang, J.

A. K. Maji, J. Wang, “Fracture mechanics of a tension-shear macrocrack in rocks,” Exp. Mech. 32, 190–196 (1992).
[CrossRef]

Williams, D.

D. Nelson, E. Fuchs, A. Makino, D. Williams, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part II: Experiments,” Exp. Mech. 34, 79–88 (1994).
[CrossRef]

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Interferometry, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1989).

Zhang, J.

J. Zhang, “Two-dimensional in-plane electronic speckle pattern interferometer and its application to residual stress determination,” Opt. Eng. 37, 2402–2409 (1998).
[CrossRef]

Zhang, X.

M. Y. Y. Hung, K. W. Long, X. Zhang, J. D. Hovanesian, “Fast detection of residual stress by shearography,” in Industrial Laser Interferometry II, M. Y. Y. Hung, R. Pryputniewicz, eds., Proc. SPIE955, 26–36 (1988).
[CrossRef]

Appl. Opt.

Exp. Mech.

J. T. Malmo, O. J. Løkberg, G. A. Slettemoen, “Interferometric testing at very high temperatures by TV holography (ESPI),” Exp. Mech. 28, 315–321 (1988).
[CrossRef]

A. K. Maji, J. Wang, “Fracture mechanics of a tension-shear macrocrack in rocks,” Exp. Mech. 32, 190–196 (1992).
[CrossRef]

Z. Jia, S. P. Shah, “Two-dimensional electronic speckle pattern interferometry and concrete-fracture processes,” Exp. Mech. 34, 262–270 (1994).
[CrossRef]

G. Nicoletto, “Moiré interferometry determination of residual stresses in the presence of gradients,” Exp. Mech. 31, 252–256 (1991).
[CrossRef]

D. V. Nelson, J. T. McCrickerd, “Residual-stress determination through combined use of holographic interferometry and blind-hole drilling,” Exp. Mech. 26, 371–378 (1986).
[CrossRef]

A. Makino, D. Nelson, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part I: Theory,” Exp. Mech. 34, 66–78 (1994).
[CrossRef]

D. Nelson, E. Fuchs, A. Makino, D. Williams, “Residual-stress determination by single-axis holographic interferometry and hole drilling—Part II: Experiments,” Exp. Mech. 34, 79–88 (1994).
[CrossRef]

S.-T. Lin, C.-T. Hsieh, C.-P. Hu, “Two holographic blind-hole methods for measuring residual stresses,” Exp. Mech. 34, 141–147 (1994).
[CrossRef]

Exp. Tech.

A. McDonach, J. McKelvie, P. MacKenzie, C. A. Walker, “Improved moiré interferometry and applications in fracture mechanics, residual stresses and damaged composites,” Exp. Tech. 7, 20–24 (1983).
[CrossRef]

J. Eng. Mater. Technol.

F. M. Furgiuele, L. Pagnotta, A. Poggialini, “Measuring residual stresses by hole drilling and coherent optics techniques: a numerical calibration,” J. Eng. Mater. Technol. 113, 41–50 (1991).
[CrossRef]

J. Phys. E

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E 3, 214–218 (1970).
[CrossRef]

J. Strain Anal.

D. Denby, J. A. Leendertz, “Plane-surface strain examination by speckle pattern interferometry using electronic processing,” J. Strain Anal. 9, 17–25 (1974).
[CrossRef]

Meas. Control

J. N. Butters, J. A. Leendertz, “Holographic and video techniques applied to engineering measurements,” Meas. Control 4, 349–354 (1971).

Meas. Sci. Technol.

T. Flemming, M. Hertwig, R. Usinger, “Speckle interferometry for highly localized displacement fields,” Meas. Sci. Technol. 4, 820–825 (1993).
[CrossRef]

D. Paoletti, G. S. Spagnolo, “Application of fibre optic digital speckle interferometry to mural painting diagnostics,” Meas. Sci. Technol. 4, 614–618 (1993).
[CrossRef]

A. J. Moore, J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024–1030 (1990).
[CrossRef]

Opt. Eng.

J. Zhang, “Two-dimensional in-plane electronic speckle pattern interferometer and its application to residual stress determination,” Opt. Eng. 37, 2402–2409 (1998).
[CrossRef]

M. J. Pechersky, R. F. Miller, C. S. Vikram, “Residual stress measurements with laser speckle correlation interferometry and local heat treating,” Opt. Eng. 34, 2964–2971 (1995).
[CrossRef]

Opt. Laser Technol.

G. K. Bhat, “Nondestructive evaluation of materials at high temperatures using electro-optic holography,” Opt. Laser Technol. 28, 157–162 (1996).
[CrossRef]

Opt. Lasers Eng.

K. E. Perry, “Delamination and damage studies of composite materials using phase-shifting interferometry,” Opt. Lasers Eng. 24, 467–483 (1996).
[CrossRef]

S. Takemoto, “Holography and electronic speckle pattern interferometry in geophysics,” Opt. Lasers Eng. 24, 145–160 (1996).
[CrossRef]

A. J. Moore, J. R. Tyrer, “Two-dimensional strain measurement with ESPI,” Opt. Lasers Eng. 24, 381–402 (1996).
[CrossRef]

Weld. Prod.

A. A. Antonov, “Inspecting the level of residual stresses in welded joints by laser interferometry,” Weld. Prod. 30, 29–31 (1983).

Other

M. Y. Y. Hung, K. W. Long, X. Zhang, J. D. Hovanesian, “Fast detection of residual stress by shearography,” in Industrial Laser Interferometry II, M. Y. Y. Hung, R. Pryputniewicz, eds., Proc. SPIE955, 26–36 (1988).
[CrossRef]

S. T. Lin, C. T. Hsieh, C. K. Lee, “Full field phase-shifting holographic blind-hole technique for in-plane residual stress determination,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 226–237 (1995).

C. T. Hsieh, S. T. Lin, C. K. Lee, “In-plane residual stress measurement with one axisymmetric phase-shifting holographic blind-hole fringe pattern,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 238–248 (1995).

A. Makino, Residual Stress Measurement using the Holographic Hole Drilling Technique, Ph.D. dissertation (Stanford University, Stanford, Calif., 1994).

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).

P. Meinlschmidt, K. D. Hinsch, R. S. Sirohi, eds., Selected Papers on Electronic Speckle Pattern Interferometry: Principles and Practice, SPIE Milestone Series 132 (SPIE Optical Engineering Press, Bellingham, Wash., 1996).

C. A. Sciammarella, G. Bhat, A. Albertazzi, “Measurement of strains by means of electro-optics holography,” in Applications of Optical Engineering, R. P. Guzik, ed., Proc. SPIE1396, 143–154 (1991).

A. E. Ennos, “Speckle interferometry,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1978), Vol. 16, Chap. 4, pp. 235–288.
[CrossRef]

R. K. Erf, ed., Speckle Metrology (Academic, New York, 1978).

R. Jones, C. Wykes, Holographic and Speckle Interferometry, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1989).

R. S. Sirohi, ed., Selected Papers on Speckle Metrology, SPIE Milestone Series 35 (SPIE Optical Engineering Press, Bellingham, Wash., 1991).

R. S. Sirohi, ed., Speckle Metrology (Marcel Dekker, New York, 1993).

V. P. Shchepinov, V. S. Pisarev, Strain and Stress Analysis by Holographic and Speckle Interferometry (Wiley, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical arrangement of the 2-D in-plane displacement-sensitive ESPI system.

Fig. 2
Fig. 2

(a) Fringe pattern indicating the u component of the displacement field: angle η, 45°; working area, 14.0 mm × 10.0 mm. (b) Fringe pattern indicating the v component of the displacement field: angle η, 45°; working area, 10.0 mm × 14.0 mm.

Fig. 3
Fig. 3

(a) Fringe pattern indicating the u component of the displacement field: angle η, 0°; working area, 14.0 mm × 10.0 mm. (b) Fringe pattern indicating the v component of the displacement field: angle η, 0°; working area, 10.0 mm × 14.0 mm.

Fig. 4
Fig. 4

u-Displacement contours generated when holes were drilled at different positions on a CD-R with the working area 21.0 mm × 14.8 mm for 4i and j and 12.0 mm × 8.5 mm for the others; 4b and 4d were observed from the recording layer side whereas the others were observed from the substrate side.

Fig. 5
Fig. 5

Low-pass filtered fringe pattern showing the greatest residual stress of the disc investigated in Fig. 4. The hole was generated at a distance of ∼35 mm along the y axis.

Tables (1)

Tables Icon

Table 1 Residual Stress Components Calculated from Figs. 2(a) and 3(a)

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I AB - I AB = 2 U A 0 U B 0 cos   φ AB - cos φ AB + Δ φ AB = 4 U A 0 U B 0 sin φ AB + Δ φ AB 2 sin Δ φ AB 2 ,
Δ φ AB = 2 π λ   2 u   sin   θ ,
I AB - I AB 2 1 / 2 = 16 U A 0 2 U B 0 2 sin 2 φ AB + Δ φ AB 2 sin 2 Δ φ AB 2 1 / 2 = 2 2   U A 0 U B 0 sin φ AB + Δ φ AB 2 × 1 - cos   Δ φ AB 1 / 2 .
1 - cos 4 π λ   u   sin   θ 1 / 2 .
u b & d = N x λ 2   sin   θ ,
Δ u b & d = λ 2   sin   θ .
I CD - I CD 2 1 / 2 = 2 2   U C 0 U D 0 sin φ CD + Δ φ CD 2 × 1 - cos   Δ φ CD 1 / 2 ,
Δ φ CD = 2 π λ   2 v   sin   β ,
v b & d = N y λ 2   sin   β .
u r ,   α = 1 + ν r 0 2 2 E 1 r σ x + σ y cos   α + σ x - σ y × 1 - r 0 2 r 2 cos   3 α + 3 - ν 1 + ν cos   α + 2 τ xy 1 - r 0 2 r 2 sin   3 α + 3 - ν 1 + ν sin   α ,
v r ,   α = 1 + ν r 0 2 2 E 1 r σ x + σ y sin   α + σ x - σ y × 1 - r 0 2 r 2 sin   3 α - 3 - ν 1 + ν sin   α + 2 τ xy - 1 - r 0 2 r 2 cos   3 α + 3 - ν 1 + ν cos   α ,
N x r ,   α = C x σ x + C y σ y + C xy τ xy ,
N x 1 r 1 ,   α 1 N x 2 r 2 ,   α 2 N x 3 r 3 ,   α 3 = C x 1 C y 1 C xy 1 C x 2 C y 2 C xy 2 C x 3 C y 3 C xy 3 σ x σ y τ xy ,
σ x σ y τ xy = C x 1 C y 1 C xy 1 C x 2 C y 2 C xy 2 C x 3 C y 3 C xy 3 - 1 N x 1 r 1 ,   α 1 N x 2 r 2 ,   α 2 N x 3 r 3 ,   α 3 .
σ 1 ,   σ 2 = σ x + σ y 2 ± σ x - σ y 2 2 + τ xy 2 1 / 2 ,
η = 1 2 tan - 1 2 τ xy σ x - σ y when   σ x - σ y > 0 π 4 σ x - σ y = 0 π 4 + 1 2 tan - 1 2 τ xy σ x - σ y σ x - σ y < 0 .
N x r ,   α = sin   θ 1 + ν r 0 2 λ E 1 r σ x + σ y cos   α + σ x - σ y × 1 - r 0 2 r 2 cos   3 α + 3 - ν 1 + ν cos   α ,
N y r ,   α = sin   β 1 + ν r 0 2 λ E 1 r σ x + σ y sin   α + σ x - σ y × 1 - r 0 2 r 2 sin   3 α - 3 - ν 1 + ν sin   α .

Metrics