Abstract

We used a near-diffraction-limited flow or light-wave-interaction pipe to produce a Sagnac-interferometer-based Fresnel drag fluid flowmeter capable of detecting extremely small flow rates. An optimized design of the pipe along with the use of a state-of-the-art Sagnac interferometer results in a minimum-detectable water flow rate of 2.4 nl/s [1 drop/(5 h)]. The flowmeter’s capability of measuring the water consumption by a small plant in real time has been demonstrated. We then designed an automated alignment system that finds and maintains the optimum fiber-coupling regime, which makes the applications of the Fresnel-drag-based flowmeters practical, especially if the length of the interaction pipe is long. Finally, we have applied the automatic alignment technique to an air flowmeter.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. deCarvalho, J. Blake, W. Sorin, “A Fresnel drag flow meter,” in Digest of the Ninth Optical Fiber Sensors Conference (Optical Society of America, Washington, D.C., 1993), pp. 397–400.
  2. R. deCarvalho, J. Blake, “Slow-flow measurements and fluid dynamics analysis using the Fresnel drag effect,” Appl. Opt. 33, 6073–6077 (1994).
    [CrossRef]
  3. A. Tselikov, J. Blake, “Fresnel drag measurements for determination of ultra-slow flow rates,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 206–209.
  4. G. A. Sanders, S. Ezekeil, “Measurements of Fresnel drag in moving media using a ring-resonator,” J. Opt. Soc. Am. B 5, 674–678 (1988).
    [CrossRef]
  5. J. N. Blake, B. Szafraniec, J. R. Feth, K. Diamond, “Progress in low-cost interferometric fiber optic gyros,” in Sensors and Sensor Systems for Guidance and Navigation II, S. S. Welch, ed., Proc. SPIE1694, 188–192 (1992).
    [CrossRef]

1994

1988

Blake, J.

R. deCarvalho, J. Blake, “Slow-flow measurements and fluid dynamics analysis using the Fresnel drag effect,” Appl. Opt. 33, 6073–6077 (1994).
[CrossRef]

R. deCarvalho, J. Blake, W. Sorin, “A Fresnel drag flow meter,” in Digest of the Ninth Optical Fiber Sensors Conference (Optical Society of America, Washington, D.C., 1993), pp. 397–400.

A. Tselikov, J. Blake, “Fresnel drag measurements for determination of ultra-slow flow rates,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 206–209.

Blake, J. N.

J. N. Blake, B. Szafraniec, J. R. Feth, K. Diamond, “Progress in low-cost interferometric fiber optic gyros,” in Sensors and Sensor Systems for Guidance and Navigation II, S. S. Welch, ed., Proc. SPIE1694, 188–192 (1992).
[CrossRef]

deCarvalho, R.

R. deCarvalho, J. Blake, “Slow-flow measurements and fluid dynamics analysis using the Fresnel drag effect,” Appl. Opt. 33, 6073–6077 (1994).
[CrossRef]

R. deCarvalho, J. Blake, W. Sorin, “A Fresnel drag flow meter,” in Digest of the Ninth Optical Fiber Sensors Conference (Optical Society of America, Washington, D.C., 1993), pp. 397–400.

Diamond, K.

J. N. Blake, B. Szafraniec, J. R. Feth, K. Diamond, “Progress in low-cost interferometric fiber optic gyros,” in Sensors and Sensor Systems for Guidance and Navigation II, S. S. Welch, ed., Proc. SPIE1694, 188–192 (1992).
[CrossRef]

Ezekeil, S.

Feth, J. R.

J. N. Blake, B. Szafraniec, J. R. Feth, K. Diamond, “Progress in low-cost interferometric fiber optic gyros,” in Sensors and Sensor Systems for Guidance and Navigation II, S. S. Welch, ed., Proc. SPIE1694, 188–192 (1992).
[CrossRef]

Sanders, G. A.

Sorin, W.

R. deCarvalho, J. Blake, W. Sorin, “A Fresnel drag flow meter,” in Digest of the Ninth Optical Fiber Sensors Conference (Optical Society of America, Washington, D.C., 1993), pp. 397–400.

Szafraniec, B.

J. N. Blake, B. Szafraniec, J. R. Feth, K. Diamond, “Progress in low-cost interferometric fiber optic gyros,” in Sensors and Sensor Systems for Guidance and Navigation II, S. S. Welch, ed., Proc. SPIE1694, 188–192 (1992).
[CrossRef]

Tselikov, A.

A. Tselikov, J. Blake, “Fresnel drag measurements for determination of ultra-slow flow rates,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 206–209.

Appl. Opt.

J. Opt. Soc. Am. B

Other

R. deCarvalho, J. Blake, W. Sorin, “A Fresnel drag flow meter,” in Digest of the Ninth Optical Fiber Sensors Conference (Optical Society of America, Washington, D.C., 1993), pp. 397–400.

A. Tselikov, J. Blake, “Fresnel drag measurements for determination of ultra-slow flow rates,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 206–209.

J. N. Blake, B. Szafraniec, J. R. Feth, K. Diamond, “Progress in low-cost interferometric fiber optic gyros,” in Sensors and Sensor Systems for Guidance and Navigation II, S. S. Welch, ed., Proc. SPIE1694, 188–192 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Diffraction-limited fluid flow or light-wave-interaction pipe.

Fig. 2
Fig. 2

Fresnel drag flow probe.

Fig. 3
Fig. 3

Raw data showing output for 24-nl/s [∼1-drop/(30-min)] flow rate, τ c = 3 s (12-dB/octave roll-off).

Fig. 4
Fig. 4

Sensor output versus flow rate.

Fig. 5
Fig. 5

Experimental setup for monitoring the plant growth.

Fig. 6
Fig. 6

Water consumption of an onion bulb.

Fig. 7
Fig. 7

Automatic alignment principle diagram.

Fig. 8
Fig. 8

Coherence domain reflectometer configurations.

Fig. 9
Fig. 9

Gas flowmeter Sagnac interferometer with the loop broken in the middle.

Fig. 10
Fig. 10

Sensor output versus flow rate measured by a commercial flowmeter.

Fig. 11
Fig. 11

Transverse velocity profile for different flow rates.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α = 1 - 1 n 2 - λ 0 n d n d λ λ = λ 0 .
Δ ϕ = 4 π λ 0 c   n 2 α L v F 0 v ,
Δ ϕ = 16 n 2 α L D 2 λ 0 c F F 0 d V d t ,
2 Z R = 2 π W 0 2 n λ .
Δ ϕ diff.limited = 16 n 3 α λ 2 c F F 0 d V d t .

Metrics