Abstract

An important use of the self-mixing effect inside a frequency-modulated single-mode laser diode is in laser velocimetry and range-finding applications. The optical beam reflected by a target and injected into the laser diode cavity modulated by a reshaped current is mixed with the light inside the cavity, causing variations of the optical output power. A theoretical analysis of this effect is proposed, based on the determination of the beat frequencies of the optical power variations, to improve the accuracy of laser distance measurement. A resolution of ±1.5 mm from 50 cm to 2 m is obtained when thermal effects are taken into account.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Bosch, M. Lescure, eds. Selected Papers on Laser Distance Measurements, Vol. MS 115 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1995).
  2. S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron 31, 113–119 (1995).
    [CrossRef]
  3. P. A. Roos, M. Stephens, C. E. Wieman, “Laser vibrometer based on optical-feedback induced frequency modulation of a single-mode laser diode,” Appl. Opt. 35, 6754–6761 (1996).
    [CrossRef] [PubMed]
  4. S. Donati, L. Falzoni, S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
    [CrossRef]
  5. R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
    [CrossRef]
  6. S. Merlo, S. Donati, “Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997).
    [CrossRef]
  7. N. Servagent, T. Bosch, M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–850 (1997).
    [CrossRef]
  8. G. Beheim, K. Fritsch, “Range finding using frequency-modulated laser diode,” Appl. Opt. 25, 1439–1442 (1986).
    [CrossRef] [PubMed]
  9. S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
    [CrossRef]
  10. T. Bosch, N. Servagent, R. Chellali, M. Lescure, “A scanning range finder using the self-mixing effect inside a laser diode for 3-D vision,” in Proceedings of the 13th IEEE Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), vol. 1, pp. 226–231.
  11. P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
    [CrossRef] [PubMed]
  12. T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
    [CrossRef]
  13. K. Petermann, LD Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1991).
  14. W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
    [CrossRef]
  15. S. Kobayashi, Y. Yamamoto, I. Minoru, T. Kimura, “Direct frequency modulation in AlGaAs semiconductors lasers,” IEEE J. Quantum Electron. 18, 582–595 (1982).
    [CrossRef]
  16. M. Ito, T. Kimura, “Stationary and transient thermal properties of semiconductor laser diodes,” IEEE J. Quantum Electron. 17, 787–795 (1981).
    [CrossRef]
  17. F. Gouaux, N. Servagent, T. Bosch, “Influence of the thermal effects on the accuracy of a backscatter-modulated laser diode range finder,” in Proceedings of the Third International Congress on Optoelectronics, Optical Sensors, and Measuring Techniques (ACS Organisations, Wunstorf, Germany, 1998), pp. 227–232.
  18. G. Mourat, N. Servagent, T. Bosch, “Optical feedback effects on the spectral linewidth of semiconductor laser sensors using the self-mixing interference,” IEEE J. Quantum Electron. (to be published).
  19. T. Allgeier, H. Höfler, E. Wagner, “High precision length measurement by means of multisensory laser feedback interferometry,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 85–91 (1998).
    [CrossRef]
  20. A. Destrez, Z. Toffano, I. Joindot, C. Birocheau, L. Hassine, “Measurement of spectral characteristics of semiconductor laser diodes—effect of injected current modulation and optical feedback,” IEEE Trans. Instrum. Meas. 42, 304–310 (1993).
    [CrossRef]

1997 (2)

S. Merlo, S. Donati, “Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997).
[CrossRef]

N. Servagent, T. Bosch, M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–850 (1997).
[CrossRef]

1996 (4)

P. A. Roos, M. Stephens, C. E. Wieman, “Laser vibrometer based on optical-feedback induced frequency modulation of a single-mode laser diode,” Appl. Opt. 35, 6754–6761 (1996).
[CrossRef] [PubMed]

S. Donati, L. Falzoni, S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
[CrossRef]

R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
[CrossRef]

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

1995 (1)

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron 31, 113–119 (1995).
[CrossRef]

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

1993 (1)

A. Destrez, Z. Toffano, I. Joindot, C. Birocheau, L. Hassine, “Measurement of spectral characteristics of semiconductor laser diodes—effect of injected current modulation and optical feedback,” IEEE Trans. Instrum. Meas. 42, 304–310 (1993).
[CrossRef]

1992 (1)

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

1988 (1)

1986 (1)

1982 (1)

S. Kobayashi, Y. Yamamoto, I. Minoru, T. Kimura, “Direct frequency modulation in AlGaAs semiconductors lasers,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

1981 (1)

M. Ito, T. Kimura, “Stationary and transient thermal properties of semiconductor laser diodes,” IEEE J. Quantum Electron. 17, 787–795 (1981).
[CrossRef]

Addy, R. C.

R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
[CrossRef]

Allgeier, T.

T. Allgeier, H. Höfler, E. Wagner, “High precision length measurement by means of multisensory laser feedback interferometry,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 85–91 (1998).
[CrossRef]

Beheim, G.

Birocheau, C.

A. Destrez, Z. Toffano, I. Joindot, C. Birocheau, L. Hassine, “Measurement of spectral characteristics of semiconductor laser diodes—effect of injected current modulation and optical feedback,” IEEE Trans. Instrum. Meas. 42, 304–310 (1993).
[CrossRef]

Bosch, T.

N. Servagent, T. Bosch, M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–850 (1997).
[CrossRef]

T. Bosch, N. Servagent, R. Chellali, M. Lescure, “A scanning range finder using the self-mixing effect inside a laser diode for 3-D vision,” in Proceedings of the 13th IEEE Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), vol. 1, pp. 226–231.

G. Mourat, N. Servagent, T. Bosch, “Optical feedback effects on the spectral linewidth of semiconductor laser sensors using the self-mixing interference,” IEEE J. Quantum Electron. (to be published).

F. Gouaux, N. Servagent, T. Bosch, “Influence of the thermal effects on the accuracy of a backscatter-modulated laser diode range finder,” in Proceedings of the Third International Congress on Optoelectronics, Optical Sensors, and Measuring Techniques (ACS Organisations, Wunstorf, Germany, 1998), pp. 227–232.

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Chellali, R.

T. Bosch, N. Servagent, R. Chellali, M. Lescure, “A scanning range finder using the self-mixing effect inside a laser diode for 3-D vision,” in Proceedings of the 13th IEEE Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), vol. 1, pp. 226–231.

de Groot, P. J.

Destrez, A.

A. Destrez, Z. Toffano, I. Joindot, C. Birocheau, L. Hassine, “Measurement of spectral characteristics of semiconductor laser diodes—effect of injected current modulation and optical feedback,” IEEE Trans. Instrum. Meas. 42, 304–310 (1993).
[CrossRef]

Donati, S.

S. Merlo, S. Donati, “Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997).
[CrossRef]

S. Donati, L. Falzoni, S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
[CrossRef]

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron 31, 113–119 (1995).
[CrossRef]

Falzoni, L.

S. Donati, L. Falzoni, S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
[CrossRef]

Fritsch, K.

Gallatin, G. M.

Giuliani, G.

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron 31, 113–119 (1995).
[CrossRef]

Gouaux, F.

F. Gouaux, N. Servagent, T. Bosch, “Influence of the thermal effects on the accuracy of a backscatter-modulated laser diode range finder,” in Proceedings of the Third International Congress on Optoelectronics, Optical Sensors, and Measuring Techniques (ACS Organisations, Wunstorf, Germany, 1998), pp. 227–232.

Grattan, K. T. V.

R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Hassine, L.

A. Destrez, Z. Toffano, I. Joindot, C. Birocheau, L. Hassine, “Measurement of spectral characteristics of semiconductor laser diodes—effect of injected current modulation and optical feedback,” IEEE Trans. Instrum. Meas. 42, 304–310 (1993).
[CrossRef]

Höfler, H.

T. Allgeier, H. Höfler, E. Wagner, “High precision length measurement by means of multisensory laser feedback interferometry,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 85–91 (1998).
[CrossRef]

Ikeda, H.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

Ito, M.

M. Ito, T. Kimura, “Stationary and transient thermal properties of semiconductor laser diodes,” IEEE J. Quantum Electron. 17, 787–795 (1981).
[CrossRef]

Joindot, I.

A. Destrez, Z. Toffano, I. Joindot, C. Birocheau, L. Hassine, “Measurement of spectral characteristics of semiconductor laser diodes—effect of injected current modulation and optical feedback,” IEEE Trans. Instrum. Meas. 42, 304–310 (1993).
[CrossRef]

Kimura, T.

S. Kobayashi, Y. Yamamoto, I. Minoru, T. Kimura, “Direct frequency modulation in AlGaAs semiconductors lasers,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

M. Ito, T. Kimura, “Stationary and transient thermal properties of semiconductor laser diodes,” IEEE J. Quantum Electron. 17, 787–795 (1981).
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, I. Minoru, T. Kimura, “Direct frequency modulation in AlGaAs semiconductors lasers,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

Lescure, M.

N. Servagent, T. Bosch, M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–850 (1997).
[CrossRef]

T. Bosch, N. Servagent, R. Chellali, M. Lescure, “A scanning range finder using the self-mixing effect inside a laser diode for 3-D vision,” in Proceedings of the 13th IEEE Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), vol. 1, pp. 226–231.

Macomber, S. H.

Merlo, S.

S. Merlo, S. Donati, “Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997).
[CrossRef]

S. Donati, L. Falzoni, S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
[CrossRef]

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron 31, 113–119 (1995).
[CrossRef]

Minoru, I.

S. Kobayashi, Y. Yamamoto, I. Minoru, T. Kimura, “Direct frequency modulation in AlGaAs semiconductors lasers,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

Mourat, G.

G. Mourat, N. Servagent, T. Bosch, “Optical feedback effects on the spectral linewidth of semiconductor laser sensors using the self-mixing interference,” IEEE J. Quantum Electron. (to be published).

Nishide, K.

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

Palmer, A. W.

R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Petermann, K.

K. Petermann, LD Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1991).

Roos, P. A.

Sawaki, T.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

Servagent, N.

N. Servagent, T. Bosch, M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–850 (1997).
[CrossRef]

T. Bosch, N. Servagent, R. Chellali, M. Lescure, “A scanning range finder using the self-mixing effect inside a laser diode for 3-D vision,” in Proceedings of the 13th IEEE Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), vol. 1, pp. 226–231.

G. Mourat, N. Servagent, T. Bosch, “Optical feedback effects on the spectral linewidth of semiconductor laser sensors using the self-mixing interference,” IEEE J. Quantum Electron. (to be published).

F. Gouaux, N. Servagent, T. Bosch, “Influence of the thermal effects on the accuracy of a backscatter-modulated laser diode range finder,” in Proceedings of the Third International Congress on Optoelectronics, Optical Sensors, and Measuring Techniques (ACS Organisations, Wunstorf, Germany, 1998), pp. 227–232.

Shibata, T.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

Shinohara, S.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

Stephens, M.

Sumi, M.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

Toffano, Z.

A. Destrez, Z. Toffano, I. Joindot, C. Birocheau, L. Hassine, “Measurement of spectral characteristics of semiconductor laser diodes—effect of injected current modulation and optical feedback,” IEEE Trans. Instrum. Meas. 42, 304–310 (1993).
[CrossRef]

Wagner, E.

T. Allgeier, H. Höfler, E. Wagner, “High precision length measurement by means of multisensory laser feedback interferometry,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 85–91 (1998).
[CrossRef]

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Wieman, C. E.

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, I. Minoru, T. Kimura, “Direct frequency modulation in AlGaAs semiconductors lasers,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

Yoshida, H.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

Appl. Opt. (3)

IEEE J. Quantum Electron (1)

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron 31, 113–119 (1995).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Merlo, S. Donati, “Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997).
[CrossRef]

S. Kobayashi, Y. Yamamoto, I. Minoru, T. Kimura, “Direct frequency modulation in AlGaAs semiconductors lasers,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

M. Ito, T. Kimura, “Stationary and transient thermal properties of semiconductor laser diodes,” IEEE J. Quantum Electron. 17, 787–795 (1981).
[CrossRef]

IEEE Trans. Instrum. Meas. (5)

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

A. Destrez, Z. Toffano, I. Joindot, C. Birocheau, L. Hassine, “Measurement of spectral characteristics of semiconductor laser diodes—effect of injected current modulation and optical feedback,” IEEE Trans. Instrum. Meas. 42, 304–310 (1993).
[CrossRef]

N. Servagent, T. Bosch, M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–850 (1997).
[CrossRef]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

S. Donati, L. Falzoni, S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
[CrossRef]

J. Lightwave Technol. (2)

R. C. Addy, A. W. Palmer, K. T. V. Grattan, “Effects of external reflector alignment in sensing applications of optical feedback in laser diodes,” J. Lightwave Technol. 14, 2672–2676 (1996).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Other (6)

K. Petermann, LD Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1991).

F. Gouaux, N. Servagent, T. Bosch, “Influence of the thermal effects on the accuracy of a backscatter-modulated laser diode range finder,” in Proceedings of the Third International Congress on Optoelectronics, Optical Sensors, and Measuring Techniques (ACS Organisations, Wunstorf, Germany, 1998), pp. 227–232.

G. Mourat, N. Servagent, T. Bosch, “Optical feedback effects on the spectral linewidth of semiconductor laser sensors using the self-mixing interference,” IEEE J. Quantum Electron. (to be published).

T. Allgeier, H. Höfler, E. Wagner, “High precision length measurement by means of multisensory laser feedback interferometry,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 85–91 (1998).
[CrossRef]

T. Bosch, M. Lescure, eds. Selected Papers on Laser Distance Measurements, Vol. MS 115 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1995).

T. Bosch, N. Servagent, R. Chellali, M. Lescure, “A scanning range finder using the self-mixing effect inside a laser diode for 3-D vision,” in Proceedings of the 13th IEEE Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), vol. 1, pp. 226–231.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Equivalent theoretical model for a LD with an external Fabry–Perot cavity.

Fig. 2
Fig. 2

Theoretical output power P c and its derivative for a triangular injection current.

Fig. 3
Fig. 3

Theoretical optical power variations and the corresponding derivative for a target at a distance of 2.4 cm and with a speed of 210 μm/s.

Fig. 4
Fig. 4

Theoretical comparison of the pulse-counting method and the beat-frequency method for distance measurement for a modulated LD with an optical frequency shift of 36 GHz.

Fig. 5
Fig. 5

Experimental setup for the range finder that uses a reshaped current: D, target distance.

Fig. 6
Fig. 6

Optical power variations (a) with a triangular current and (b) after reshaping the current.

Fig. 7
Fig. 7

Calibration of the range finder for distances between 50 cm and 2 m.

Fig. 8
Fig. 8

Optical power with hysteresis for a range-finding application with a stationary target: (a) theoretical result and (b) experimental result.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

g c th = g s th - ζ l cos ϕ = g s th + n c - n s g n , g n = - 4 π v s c μ e n , Δ Φ = 4 π μ ec n c - μ es n s c   l + ζ   sin ϕ = 0 ,
v c - v s + C 2 π τ D sin ϕ + arctan   α = 0 , C = τ D τ l   ζ 1 + α 2 .
P c = P s 1 + m   cos ϕ ,
P ˙ c = - Δ v ˙ 2 π m τ D P s sin ϕ C   cos ϕ + arctan α ,
Δ v ˙ = v ˙ c - v ˙ s = - 1 τ D d v s τ D d t C   cos ϕ + arctan α 1 + C   cos ϕ + arctan α .
f t 0 t 0 + T = 1 / T ,
v = c 2 v s   σ f 0 T i ,
D = cT i 8 v s T i / 2 - v s 0 σ f 0 T i / 2 - σ f T i / 2 T i .
D = c 4 | v ˙ s | σ 2 N 2 - 1 Δ t 2 - σ 1 N 1 - 1 Δ t 1 , v = c 2 v s σ 1 N 1 - 1 Δ t 1 + σ 2 N 2 - 1 Δ t 2 .
D c 4 Δ v pp σ 2 N 2 - σ 1 N 1 ,     v c 2 v s σ 1 N 1 + σ 2 N 2 ,
i R = i ˆ R ,     i ˆ R = F - 1 v ˆ sT .

Metrics