Abstract

An experimental method for accurate measurements of the reflectivity spectrum of mirrors is presented. It combines the noise reduction obtained with multiple beam reflections on two identical mirrors; high-beam quality, owing to the use of single-mode optical fibers; and high immunity against intensity variations of the beam. This method is demonstrated for characterizing a 30-period GaAs/Al0.65Ga0.35As distributed Bragg reflector designed for long-wavelength vertical-cavity surface-emitting lasers. Its peak reflectivity is found to be 99.43 ± 0.04% at 1.562 μm, and an optical absorption coefficient of α = 36 ± 6 cm-1 is derived. The peak internal reflectivity of this distributed Bragg reflector used as the top mirror in a wafer-fused vertical-cavity surface-emitting laser is calculated to be 98.87 ± 0.12%, and the transmission is 0.28%.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Gourley, P. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and AlxGa1–xAs for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986).
    [CrossRef]
  2. A. Chailertvanitkul, K. Iga, K. Moriki, “GaInAsP/InP surface emitting laser (λ = 1.4 μm, 77 K) with heteromultilayer Bragg reflector,” Electron. Lett. 21, 303–304 (1985).
    [CrossRef]
  3. K. Streubel, S. Rapp, J. André, J. Wallin, “Room temperature pulsed operation of 1.55-μm vertical cavity laser with an InP-based Bragg reflector,” IEEE Photonics Technol. Lett. PTL-8, 1121–1123 (1996).
    [CrossRef]
  4. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).
  5. P. Guy, K. Woodbridge, S. K. Haywood, M. Hopkinson, “Highly doped 1.55 μm GaxIn1–xAs/InP distributed Bragg reflector stacks,” Electron. Lett. 30, 1526–1527 (1994).
    [CrossRef]
  6. S. W. Corzine, “Design of vertical-cavity surface emitting lasers with strained and unstrained quantum well active regions,” Ph.D. dissertation (University of California, Santa Barbara, Calif., 1993).
  7. D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
    [CrossRef]
  8. K. Tai, L. Yang, Y. H. Wang, J. D. Wynn, A. Y. Cho, “Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers,” Appl. Phys. Lett. 56, 2496–2498 (1990).
    [CrossRef]
  9. F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Application aux couches minces,” Ann. Phys. (Paris) 12, 596–640 and 707–781 (1950).
  10. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, London, 1986).
    [CrossRef]
  11. M. A. Afromowitz, “Refractive index of Ga1–xAlxAs,” Solid State Commun. 15, 59–63 (1974).
    [CrossRef]
  12. R. Baets, P. Demeester, P. E. Lagasse, “High-reflectivity GaAs-AlGaAs mirrors: sensitivity analysis with respect to epitaxial growth parameters,” J. Appl. Phys. 62, 723–727 (1987).
    [CrossRef]
  13. C. H. Henry, R. A. Logan, F. R. Merritt, J. P. Luongo, “The effect of intervalence band absorption on the thermal behaviour of InGaAsP lasers,” IEEE J. Quantum Electron. QE-19, 947–952 (1983).
    [CrossRef]
  14. C.-A. Berseth, A. V. Syrbu, V. P. Iakovlev, O. Dehaese, A. Rudra, E. Kapon, “Highly accurate measurement of reflectivity and optical absorption in distributed Bragg reflectors using a wafer-fused resonator,” Electron. Lett. (to be published).
  15. Unfortunately, the mirror measured in this paper was completely used up during the fabrication of VCSEL’s, so no samples were left for comparative measurements with the technique of the fused resonator.
  16. Z. L. Ziao, D. E. Mull, “Wafer fusion—a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990).
    [CrossRef]
  17. J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.
  18. F. K. Reinhart, R. A. Logan, “Interface stress of AlxGa1–xAs–GaAs layer structures,” J. Appl. Phys. 44, 3171–3175 (1973).
    [CrossRef]

1997 (1)

D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
[CrossRef]

1996 (1)

K. Streubel, S. Rapp, J. André, J. Wallin, “Room temperature pulsed operation of 1.55-μm vertical cavity laser with an InP-based Bragg reflector,” IEEE Photonics Technol. Lett. PTL-8, 1121–1123 (1996).
[CrossRef]

1994 (1)

P. Guy, K. Woodbridge, S. K. Haywood, M. Hopkinson, “Highly doped 1.55 μm GaxIn1–xAs/InP distributed Bragg reflector stacks,” Electron. Lett. 30, 1526–1527 (1994).
[CrossRef]

1990 (2)

K. Tai, L. Yang, Y. H. Wang, J. D. Wynn, A. Y. Cho, “Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers,” Appl. Phys. Lett. 56, 2496–2498 (1990).
[CrossRef]

Z. L. Ziao, D. E. Mull, “Wafer fusion—a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990).
[CrossRef]

1987 (1)

R. Baets, P. Demeester, P. E. Lagasse, “High-reflectivity GaAs-AlGaAs mirrors: sensitivity analysis with respect to epitaxial growth parameters,” J. Appl. Phys. 62, 723–727 (1987).
[CrossRef]

1986 (1)

P. L. Gourley, P. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and AlxGa1–xAs for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986).
[CrossRef]

1985 (1)

A. Chailertvanitkul, K. Iga, K. Moriki, “GaInAsP/InP surface emitting laser (λ = 1.4 μm, 77 K) with heteromultilayer Bragg reflector,” Electron. Lett. 21, 303–304 (1985).
[CrossRef]

1983 (1)

C. H. Henry, R. A. Logan, F. R. Merritt, J. P. Luongo, “The effect of intervalence band absorption on the thermal behaviour of InGaAsP lasers,” IEEE J. Quantum Electron. QE-19, 947–952 (1983).
[CrossRef]

1974 (1)

M. A. Afromowitz, “Refractive index of Ga1–xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[CrossRef]

1973 (1)

F. K. Reinhart, R. A. Logan, “Interface stress of AlxGa1–xAs–GaAs layer structures,” J. Appl. Phys. 44, 3171–3175 (1973).
[CrossRef]

1950 (1)

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Application aux couches minces,” Ann. Phys. (Paris) 12, 596–640 and 707–781 (1950).

Abelès, F.

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Application aux couches minces,” Ann. Phys. (Paris) 12, 596–640 and 707–781 (1950).

Afromowitz, M. A.

M. A. Afromowitz, “Refractive index of Ga1–xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[CrossRef]

André, J.

K. Streubel, S. Rapp, J. André, J. Wallin, “Room temperature pulsed operation of 1.55-μm vertical cavity laser with an InP-based Bragg reflector,” IEEE Photonics Technol. Lett. PTL-8, 1121–1123 (1996).
[CrossRef]

Babic, D. I.

D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
[CrossRef]

Baets, R.

R. Baets, P. Demeester, P. E. Lagasse, “High-reflectivity GaAs-AlGaAs mirrors: sensitivity analysis with respect to epitaxial growth parameters,” J. Appl. Phys. 62, 723–727 (1987).
[CrossRef]

Behrend, J.

J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.

Berseth, C.-A.

J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.

C.-A. Berseth, A. V. Syrbu, V. P. Iakovlev, O. Dehaese, A. Rudra, E. Kapon, “Highly accurate measurement of reflectivity and optical absorption in distributed Bragg reflectors using a wafer-fused resonator,” Electron. Lett. (to be published).

Bowers, J. E.

D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
[CrossRef]

Carlin, J.-F.

J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.

Chailertvanitkul, A.

A. Chailertvanitkul, K. Iga, K. Moriki, “GaInAsP/InP surface emitting laser (λ = 1.4 μm, 77 K) with heteromultilayer Bragg reflector,” Electron. Lett. 21, 303–304 (1985).
[CrossRef]

Cho, A. Y.

K. Tai, L. Yang, Y. H. Wang, J. D. Wynn, A. Y. Cho, “Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers,” Appl. Phys. Lett. 56, 2496–2498 (1990).
[CrossRef]

Corzine, S. W.

S. W. Corzine, “Design of vertical-cavity surface emitting lasers with strained and unstrained quantum well active regions,” Ph.D. dissertation (University of California, Santa Barbara, Calif., 1993).

Dehaese, O.

C.-A. Berseth, A. V. Syrbu, V. P. Iakovlev, O. Dehaese, A. Rudra, E. Kapon, “Highly accurate measurement of reflectivity and optical absorption in distributed Bragg reflectors using a wafer-fused resonator,” Electron. Lett. (to be published).

Demeester, P.

R. Baets, P. Demeester, P. E. Lagasse, “High-reflectivity GaAs-AlGaAs mirrors: sensitivity analysis with respect to epitaxial growth parameters,” J. Appl. Phys. 62, 723–727 (1987).
[CrossRef]

Drummond, P. J.

P. L. Gourley, P. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and AlxGa1–xAs for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986).
[CrossRef]

Gourley, P. L.

P. L. Gourley, P. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and AlxGa1–xAs for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986).
[CrossRef]

Guy, P.

P. Guy, K. Woodbridge, S. K. Haywood, M. Hopkinson, “Highly doped 1.55 μm GaxIn1–xAs/InP distributed Bragg reflector stacks,” Electron. Lett. 30, 1526–1527 (1994).
[CrossRef]

Haywood, S. K.

P. Guy, K. Woodbridge, S. K. Haywood, M. Hopkinson, “Highly doped 1.55 μm GaxIn1–xAs/InP distributed Bragg reflector stacks,” Electron. Lett. 30, 1526–1527 (1994).
[CrossRef]

Henry, C. H.

C. H. Henry, R. A. Logan, F. R. Merritt, J. P. Luongo, “The effect of intervalence band absorption on the thermal behaviour of InGaAsP lasers,” IEEE J. Quantum Electron. QE-19, 947–952 (1983).
[CrossRef]

Hopkinson, M.

P. Guy, K. Woodbridge, S. K. Haywood, M. Hopkinson, “Highly doped 1.55 μm GaxIn1–xAs/InP distributed Bragg reflector stacks,” Electron. Lett. 30, 1526–1527 (1994).
[CrossRef]

Hu, E. L.

D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
[CrossRef]

Iakovlev, V. P.

C.-A. Berseth, A. V. Syrbu, V. P. Iakovlev, O. Dehaese, A. Rudra, E. Kapon, “Highly accurate measurement of reflectivity and optical absorption in distributed Bragg reflectors using a wafer-fused resonator,” Electron. Lett. (to be published).

Iga, K.

A. Chailertvanitkul, K. Iga, K. Moriki, “GaInAsP/InP surface emitting laser (λ = 1.4 μm, 77 K) with heteromultilayer Bragg reflector,” Electron. Lett. 21, 303–304 (1985).
[CrossRef]

Jouneau, P. H.

J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.

Kapon, E.

J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.

C.-A. Berseth, A. V. Syrbu, V. P. Iakovlev, O. Dehaese, A. Rudra, E. Kapon, “Highly accurate measurement of reflectivity and optical absorption in distributed Bragg reflectors using a wafer-fused resonator,” Electron. Lett. (to be published).

Lagasse, P. E.

R. Baets, P. Demeester, P. E. Lagasse, “High-reflectivity GaAs-AlGaAs mirrors: sensitivity analysis with respect to epitaxial growth parameters,” J. Appl. Phys. 62, 723–727 (1987).
[CrossRef]

Logan, R. A.

C. H. Henry, R. A. Logan, F. R. Merritt, J. P. Luongo, “The effect of intervalence band absorption on the thermal behaviour of InGaAsP lasers,” IEEE J. Quantum Electron. QE-19, 947–952 (1983).
[CrossRef]

F. K. Reinhart, R. A. Logan, “Interface stress of AlxGa1–xAs–GaAs layer structures,” J. Appl. Phys. 44, 3171–3175 (1973).
[CrossRef]

Luongo, J. P.

C. H. Henry, R. A. Logan, F. R. Merritt, J. P. Luongo, “The effect of intervalence band absorption on the thermal behaviour of InGaAsP lasers,” IEEE J. Quantum Electron. QE-19, 947–952 (1983).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, London, 1986).
[CrossRef]

Margalit, N. M.

D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
[CrossRef]

Mars, D. E.

D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
[CrossRef]

Merritt, F. R.

C. H. Henry, R. A. Logan, F. R. Merritt, J. P. Luongo, “The effect of intervalence band absorption on the thermal behaviour of InGaAsP lasers,” IEEE J. Quantum Electron. QE-19, 947–952 (1983).
[CrossRef]

Mirin, R. P.

D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
[CrossRef]

Moriki, K.

A. Chailertvanitkul, K. Iga, K. Moriki, “GaInAsP/InP surface emitting laser (λ = 1.4 μm, 77 K) with heteromultilayer Bragg reflector,” Electron. Lett. 21, 303–304 (1985).
[CrossRef]

Mull, D. E.

Z. L. Ziao, D. E. Mull, “Wafer fusion—a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990).
[CrossRef]

Pankove, J. I.

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).

Piprek, J.

D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
[CrossRef]

Rapp, S.

K. Streubel, S. Rapp, J. André, J. Wallin, “Room temperature pulsed operation of 1.55-μm vertical cavity laser with an InP-based Bragg reflector,” IEEE Photonics Technol. Lett. PTL-8, 1121–1123 (1996).
[CrossRef]

Reinhart, F. K.

F. K. Reinhart, R. A. Logan, “Interface stress of AlxGa1–xAs–GaAs layer structures,” J. Appl. Phys. 44, 3171–3175 (1973).
[CrossRef]

Rudra, A.

J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.

C.-A. Berseth, A. V. Syrbu, V. P. Iakovlev, O. Dehaese, A. Rudra, E. Kapon, “Highly accurate measurement of reflectivity and optical absorption in distributed Bragg reflectors using a wafer-fused resonator,” Electron. Lett. (to be published).

Sagalowicz, L.

J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.

Schoenberg, A.

J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.

Streubel, K.

D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
[CrossRef]

K. Streubel, S. Rapp, J. André, J. Wallin, “Room temperature pulsed operation of 1.55-μm vertical cavity laser with an InP-based Bragg reflector,” IEEE Photonics Technol. Lett. PTL-8, 1121–1123 (1996).
[CrossRef]

Syrbu, A. V.

C.-A. Berseth, A. V. Syrbu, V. P. Iakovlev, O. Dehaese, A. Rudra, E. Kapon, “Highly accurate measurement of reflectivity and optical absorption in distributed Bragg reflectors using a wafer-fused resonator,” Electron. Lett. (to be published).

Tai, K.

K. Tai, L. Yang, Y. H. Wang, J. D. Wynn, A. Y. Cho, “Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers,” Appl. Phys. Lett. 56, 2496–2498 (1990).
[CrossRef]

Wallin, J.

K. Streubel, S. Rapp, J. André, J. Wallin, “Room temperature pulsed operation of 1.55-μm vertical cavity laser with an InP-based Bragg reflector,” IEEE Photonics Technol. Lett. PTL-8, 1121–1123 (1996).
[CrossRef]

Wang, Y. H.

K. Tai, L. Yang, Y. H. Wang, J. D. Wynn, A. Y. Cho, “Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers,” Appl. Phys. Lett. 56, 2496–2498 (1990).
[CrossRef]

Woodbridge, K.

P. Guy, K. Woodbridge, S. K. Haywood, M. Hopkinson, “Highly doped 1.55 μm GaxIn1–xAs/InP distributed Bragg reflector stacks,” Electron. Lett. 30, 1526–1527 (1994).
[CrossRef]

Wynn, J. D.

K. Tai, L. Yang, Y. H. Wang, J. D. Wynn, A. Y. Cho, “Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers,” Appl. Phys. Lett. 56, 2496–2498 (1990).
[CrossRef]

Yang, L.

K. Tai, L. Yang, Y. H. Wang, J. D. Wynn, A. Y. Cho, “Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers,” Appl. Phys. Lett. 56, 2496–2498 (1990).
[CrossRef]

Ziao, Z. L.

Z. L. Ziao, D. E. Mull, “Wafer fusion—a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990).
[CrossRef]

Ann. Phys. (Paris) (1)

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Application aux couches minces,” Ann. Phys. (Paris) 12, 596–640 and 707–781 (1950).

Appl. Phys. Lett. (3)

Z. L. Ziao, D. E. Mull, “Wafer fusion—a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990).
[CrossRef]

P. L. Gourley, P. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and AlxGa1–xAs for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986).
[CrossRef]

K. Tai, L. Yang, Y. H. Wang, J. D. Wynn, A. Y. Cho, “Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers,” Appl. Phys. Lett. 56, 2496–2498 (1990).
[CrossRef]

Electron. Lett. (2)

P. Guy, K. Woodbridge, S. K. Haywood, M. Hopkinson, “Highly doped 1.55 μm GaxIn1–xAs/InP distributed Bragg reflector stacks,” Electron. Lett. 30, 1526–1527 (1994).
[CrossRef]

A. Chailertvanitkul, K. Iga, K. Moriki, “GaInAsP/InP surface emitting laser (λ = 1.4 μm, 77 K) with heteromultilayer Bragg reflector,” Electron. Lett. 21, 303–304 (1985).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997).
[CrossRef]

C. H. Henry, R. A. Logan, F. R. Merritt, J. P. Luongo, “The effect of intervalence band absorption on the thermal behaviour of InGaAsP lasers,” IEEE J. Quantum Electron. QE-19, 947–952 (1983).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

K. Streubel, S. Rapp, J. André, J. Wallin, “Room temperature pulsed operation of 1.55-μm vertical cavity laser with an InP-based Bragg reflector,” IEEE Photonics Technol. Lett. PTL-8, 1121–1123 (1996).
[CrossRef]

J. Appl. Phys. (2)

R. Baets, P. Demeester, P. E. Lagasse, “High-reflectivity GaAs-AlGaAs mirrors: sensitivity analysis with respect to epitaxial growth parameters,” J. Appl. Phys. 62, 723–727 (1987).
[CrossRef]

F. K. Reinhart, R. A. Logan, “Interface stress of AlxGa1–xAs–GaAs layer structures,” J. Appl. Phys. 44, 3171–3175 (1973).
[CrossRef]

Solid State Commun. (1)

M. A. Afromowitz, “Refractive index of Ga1–xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[CrossRef]

Other (6)

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, London, 1986).
[CrossRef]

C.-A. Berseth, A. V. Syrbu, V. P. Iakovlev, O. Dehaese, A. Rudra, E. Kapon, “Highly accurate measurement of reflectivity and optical absorption in distributed Bragg reflectors using a wafer-fused resonator,” Electron. Lett. (to be published).

Unfortunately, the mirror measured in this paper was completely used up during the fabrication of VCSEL’s, so no samples were left for comparative measurements with the technique of the fused resonator.

J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).

S. W. Corzine, “Design of vertical-cavity surface emitting lasers with strained and unstrained quantum well active regions,” Ph.D. dissertation (University of California, Santa Barbara, Calif., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Geometry of a VCSEL, (b) mirror for VCSEL with ideal geometry for reflectivity measurement, and (c) mirror with geometry for reflectivity measurements demonstrated here. Lines and arrows show the optical beams and their directions, as considered in the text.

Fig. 2
Fig. 2

Schematic representation of the high-accuracy reflectivity-measurement setup. Optical fiber links denoted A–C are used for A, coarse alignment with a visible laser diode; B, accurate alignment with the full spectrum of the IR LED; and C, reflectivity measurement. Mirror 1 may be moved as indicated by the arrow. The sample photodiode and its lens may be moved on two axes to keep a constant beam length.

Fig. 3
Fig. 3

X-ray rocking curve of a 30-period GaAs/AlGaAs Bragg mirror.

Fig. 4
Fig. 4

Broad reflectivity spectrum of a 30-period GaAs/AlGaAs Bragg mirror. A calculated spectrum is also shown (dashed curve).

Fig. 5
Fig. 5

Mapping of the center wavelength of stop band over the 2-in. wafer. The two rectangles show the regions used for accurate reflectivity measurements.

Fig. 6
Fig. 6

High-accuracy spectral-reflectivity measurements after 0–12 reflections.

Fig. 7
Fig. 7

Plot of log[X(N, λ)/X(0, λ)] for 0–12 reflections, for three selected wavelengths.

Fig. 8
Fig. 8

High-accuracy reflectivity of the Bragg mirror measured around the center of the stop band. A calculated spectrum is also shown (dashed curve).

Tables (1)

Tables Icon

Table 1 Comparison of Optical Absorption Coefficients Determined by the Technique Described in this Paper and by the Method of a Fused Resonatora

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R top R bottom T cavity 2   exp 2 g th N QW L QW ξ = 1 ,
δ R top R top = - α rt δ g th g th .
P s N ,   λ = I 0   T foc.lens   T pol   T bsp   R N λ   T sam.lens   E sam.PD ,
P ref λ = I 0   T foc.lens   T pol   R bsp   T ref.lens   E ref.PD ,
X N ,   λ = P s N ,   λ / P ref λ = R N λ   T bsp   T sam.lens   E sam.PD / R bsp   T ref.lens   E ref.PD = R N λ X 0 ,   λ .
log R λ = log X N ,   λ / X 0 ,   λ / N .
Δ R / R = 2 Δ X / N max = 0.003 / N max ,
Δ R / R = 0.003 / N max + 0.00015 .

Metrics