Abstract

We have measured the linear polarization induced in a beam of submillimeter radiation when it is obliquely reflected by a flat mirror made of aluminum alloy. For angles of incidence in the range 15°–45°, we measured induced polarizations in the range 0.05%–0.25%. Our measurements are within a factor of 2 of theoretical predictions. We conclude that astronomical telescopes that incorporate oblique reflections from good conductors will not introduce spurious polarizations large enough to cause significant problems for submillimeter polarimetric observations.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Hildebrand, J. L. Dotson, C. D. Dowell, S. R. Platt, D. Schleuning, J. A. Davidson, G. Novak, “Far-infrared polarimetry,” in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, M. R. Haas, J. A. Davidson, E. F. Erickson, eds., Vol. 73 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1995), pp. 97–104.
  2. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978).
  3. R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993).
    [CrossRef]
  4. D. P. Gonatas, X. D. Wu, G. Novak, R. H. Hildebrand, “Systematic effects in the measurement of far-infrared linear polarization,” Appl. Opt. 28, 1000–1006 (1989).
    [CrossRef] [PubMed]
  5. D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307–318 (1997).
    [CrossRef]
  6. E. J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981).
  7. E. J. Wollack, “A measurement of the degree scale cosmic background radiation anisotropy at 27.5, 30.5, and 33.5 GHz,” Ph.D. dissertation (Princeton University, Princeton, N.J., 1994), pp. 147–156.
  8. J. Xu, A. E. Lange, J. J. Bock, “Far-infrared emissivity measurements of reflective surfaces,” in Submillimetre and Far-Infrared Space Instrumentation, Proceedings of the 30th ESLAB Symposium (ESTEC, Noordwijk, The Netherlands, 1996), pp. 69–72.
  9. H. London, “The high-frequency resistance of superconducting tin,” Proc. R. Soc. London Ser. A 176, 522–533 (1940).
    [CrossRef]
  10. A. B. Pippard, “The surface impedance of superconductors and normal metals. II. The anomalous skin effect in normal metals,” Proc. R. Soc. London Ser. A 191, 385–399 (1947).
    [CrossRef]
  11. G. E. H. Reuter, E. H. Sondheimer, “The theory of the anomalous skin effect in metals,” Proc. R. Soc. London Ser. A 195, 336–364 (1948).
    [CrossRef]
  12. R. B. Dingle, “The anomalous skin effect and the reflectivity of Metals. I,” Physica 19, 311–347 (1953).
    [CrossRef]
  13. A. P. van Gelder, “Quantum corrections in the theory of the anomalous skin effect,” Phys. Rev. 187, 833–842 (1969).
    [CrossRef]
  14. S. Iganaki, E. Ezura, J.-F. Liu, H. Nakanishi, “Thermal expansion and microwave surface reactance of copper for the normal to anomalous skin effect region,” J. Appl. Phys. 82, 5401–5410 (1997).
    [CrossRef]
  15. S. P. Morgan, “Effect of surface roughness on eddy current losses at microwave frequencies,” J. Appl. Phys. 20, 352–362 (1949).
    [CrossRef]
  16. J. Ruze, “The effect of aperture errors on the antenna radiation pattern,” Nuovo Cimento Suppl. 9, 364–380 (1953).
    [CrossRef]
  17. “Aluminum 6061,” in Alloy Digest, filing code Al-205 (Engineering Alloy Digest, Upper Montclair, N.J., 1973), Part 1.
  18. H. P. Myers, Introductory Solid State Physics (Taylor & Francis, Bristol, Pa., 1981).
  19. M. Dragovan, “Submillimeter polarization in the Orion nebula,” Astrophys. J. 308, 270–280 (1986).
    [CrossRef]
  20. G. Novak, D. P. Gonatas, S. R. Platt, R. H. Hildebrand, “A 100-μm polarimeter for the Kuiper airborne observatory,” Proc. Astron. Soc. Pac. 101, 215–224 (1989).
    [CrossRef]
  21. S. E. Whitcomb, J. Keene, “Low-pass interference filters for submillimeter astronomy,” Appl. Opt. 19, 197–198 (1980).
    [CrossRef] [PubMed]
  22. R. Winston, “Light collection within the framework of geometrical optics,” J. Opt. Soc. Am. 60, 245–247 (1970).
    [CrossRef]
  23. R. Winston, W. T. Welford, “Geometrical vector flux and some new nonimaging concentrators,” J. Opt. Soc. Am. 69, 532–536 (1979).
    [CrossRef]
  24. T. Renbarger, J. L. Dotson, G. Novak, “An estimate of telescope polarization for the SPARO experiment,” in Astrophysics from Antarctica, G. Novak, R. H. Landsberg, eds., Vol. 141 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 205–207.
  25. “Aluminum 2024,” and “Aluminum 7075,” in Alloy Digest, filing codes Al-23 and Al-179 (Engineering Alloy Digest, Upper Montclair, N.J., 1973), part 1.

1997 (2)

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307–318 (1997).
[CrossRef]

S. Iganaki, E. Ezura, J.-F. Liu, H. Nakanishi, “Thermal expansion and microwave surface reactance of copper for the normal to anomalous skin effect region,” J. Appl. Phys. 82, 5401–5410 (1997).
[CrossRef]

1993 (1)

R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993).
[CrossRef]

1989 (2)

D. P. Gonatas, X. D. Wu, G. Novak, R. H. Hildebrand, “Systematic effects in the measurement of far-infrared linear polarization,” Appl. Opt. 28, 1000–1006 (1989).
[CrossRef] [PubMed]

G. Novak, D. P. Gonatas, S. R. Platt, R. H. Hildebrand, “A 100-μm polarimeter for the Kuiper airborne observatory,” Proc. Astron. Soc. Pac. 101, 215–224 (1989).
[CrossRef]

1986 (1)

M. Dragovan, “Submillimeter polarization in the Orion nebula,” Astrophys. J. 308, 270–280 (1986).
[CrossRef]

1980 (1)

1979 (1)

1970 (1)

1969 (1)

A. P. van Gelder, “Quantum corrections in the theory of the anomalous skin effect,” Phys. Rev. 187, 833–842 (1969).
[CrossRef]

1953 (2)

R. B. Dingle, “The anomalous skin effect and the reflectivity of Metals. I,” Physica 19, 311–347 (1953).
[CrossRef]

J. Ruze, “The effect of aperture errors on the antenna radiation pattern,” Nuovo Cimento Suppl. 9, 364–380 (1953).
[CrossRef]

1949 (1)

S. P. Morgan, “Effect of surface roughness on eddy current losses at microwave frequencies,” J. Appl. Phys. 20, 352–362 (1949).
[CrossRef]

1948 (1)

G. E. H. Reuter, E. H. Sondheimer, “The theory of the anomalous skin effect in metals,” Proc. R. Soc. London Ser. A 195, 336–364 (1948).
[CrossRef]

1947 (1)

A. B. Pippard, “The surface impedance of superconductors and normal metals. II. The anomalous skin effect in normal metals,” Proc. R. Soc. London Ser. A 191, 385–399 (1947).
[CrossRef]

1940 (1)

H. London, “The high-frequency resistance of superconducting tin,” Proc. R. Soc. London Ser. A 176, 522–533 (1940).
[CrossRef]

Bock, J. J.

J. Xu, A. E. Lange, J. J. Bock, “Far-infrared emissivity measurements of reflective surfaces,” in Submillimetre and Far-Infrared Space Instrumentation, Proceedings of the 30th ESLAB Symposium (ESTEC, Noordwijk, The Netherlands, 1996), pp. 69–72.

Davidson, J. A.

R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993).
[CrossRef]

R. H. Hildebrand, J. L. Dotson, C. D. Dowell, S. R. Platt, D. Schleuning, J. A. Davidson, G. Novak, “Far-infrared polarimetry,” in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, M. R. Haas, J. A. Davidson, E. F. Erickson, eds., Vol. 73 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1995), pp. 97–104.

Dingle, R. B.

R. B. Dingle, “The anomalous skin effect and the reflectivity of Metals. I,” Physica 19, 311–347 (1953).
[CrossRef]

Dotson, J.

R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993).
[CrossRef]

Dotson, J. L.

T. Renbarger, J. L. Dotson, G. Novak, “An estimate of telescope polarization for the SPARO experiment,” in Astrophysics from Antarctica, G. Novak, R. H. Landsberg, eds., Vol. 141 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 205–207.

R. H. Hildebrand, J. L. Dotson, C. D. Dowell, S. R. Platt, D. Schleuning, J. A. Davidson, G. Novak, “Far-infrared polarimetry,” in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, M. R. Haas, J. A. Davidson, E. F. Erickson, eds., Vol. 73 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1995), pp. 97–104.

Dowell, C. D.

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307–318 (1997).
[CrossRef]

R. H. Hildebrand, J. L. Dotson, C. D. Dowell, S. R. Platt, D. Schleuning, J. A. Davidson, G. Novak, “Far-infrared polarimetry,” in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, M. R. Haas, J. A. Davidson, E. F. Erickson, eds., Vol. 73 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1995), pp. 97–104.

Dragovan, M.

M. Dragovan, “Submillimeter polarization in the Orion nebula,” Astrophys. J. 308, 270–280 (1986).
[CrossRef]

Ezura, E.

S. Iganaki, E. Ezura, J.-F. Liu, H. Nakanishi, “Thermal expansion and microwave surface reactance of copper for the normal to anomalous skin effect region,” J. Appl. Phys. 82, 5401–5410 (1997).
[CrossRef]

Figer, D. F.

R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993).
[CrossRef]

Gonatas, D. P.

D. P. Gonatas, X. D. Wu, G. Novak, R. H. Hildebrand, “Systematic effects in the measurement of far-infrared linear polarization,” Appl. Opt. 28, 1000–1006 (1989).
[CrossRef] [PubMed]

G. Novak, D. P. Gonatas, S. R. Platt, R. H. Hildebrand, “A 100-μm polarimeter for the Kuiper airborne observatory,” Proc. Astron. Soc. Pac. 101, 215–224 (1989).
[CrossRef]

Hildebrand, R. H.

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307–318 (1997).
[CrossRef]

R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993).
[CrossRef]

G. Novak, D. P. Gonatas, S. R. Platt, R. H. Hildebrand, “A 100-μm polarimeter for the Kuiper airborne observatory,” Proc. Astron. Soc. Pac. 101, 215–224 (1989).
[CrossRef]

D. P. Gonatas, X. D. Wu, G. Novak, R. H. Hildebrand, “Systematic effects in the measurement of far-infrared linear polarization,” Appl. Opt. 28, 1000–1006 (1989).
[CrossRef] [PubMed]

R. H. Hildebrand, J. L. Dotson, C. D. Dowell, S. R. Platt, D. Schleuning, J. A. Davidson, G. Novak, “Far-infrared polarimetry,” in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, M. R. Haas, J. A. Davidson, E. F. Erickson, eds., Vol. 73 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1995), pp. 97–104.

Iganaki, S.

S. Iganaki, E. Ezura, J.-F. Liu, H. Nakanishi, “Thermal expansion and microwave surface reactance of copper for the normal to anomalous skin effect region,” J. Appl. Phys. 82, 5401–5410 (1997).
[CrossRef]

Keene, J.

Konopinski, E. J.

E. J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981).

Lange, A. E.

J. Xu, A. E. Lange, J. J. Bock, “Far-infrared emissivity measurements of reflective surfaces,” in Submillimetre and Far-Infrared Space Instrumentation, Proceedings of the 30th ESLAB Symposium (ESTEC, Noordwijk, The Netherlands, 1996), pp. 69–72.

Liu, J.-F.

S. Iganaki, E. Ezura, J.-F. Liu, H. Nakanishi, “Thermal expansion and microwave surface reactance of copper for the normal to anomalous skin effect region,” J. Appl. Phys. 82, 5401–5410 (1997).
[CrossRef]

London, H.

H. London, “The high-frequency resistance of superconducting tin,” Proc. R. Soc. London Ser. A 176, 522–533 (1940).
[CrossRef]

Morgan, S. P.

S. P. Morgan, “Effect of surface roughness on eddy current losses at microwave frequencies,” J. Appl. Phys. 20, 352–362 (1949).
[CrossRef]

Myers, H. P.

H. P. Myers, Introductory Solid State Physics (Taylor & Francis, Bristol, Pa., 1981).

Nakanishi, H.

S. Iganaki, E. Ezura, J.-F. Liu, H. Nakanishi, “Thermal expansion and microwave surface reactance of copper for the normal to anomalous skin effect region,” J. Appl. Phys. 82, 5401–5410 (1997).
[CrossRef]

Novak, G.

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307–318 (1997).
[CrossRef]

R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993).
[CrossRef]

D. P. Gonatas, X. D. Wu, G. Novak, R. H. Hildebrand, “Systematic effects in the measurement of far-infrared linear polarization,” Appl. Opt. 28, 1000–1006 (1989).
[CrossRef] [PubMed]

G. Novak, D. P. Gonatas, S. R. Platt, R. H. Hildebrand, “A 100-μm polarimeter for the Kuiper airborne observatory,” Proc. Astron. Soc. Pac. 101, 215–224 (1989).
[CrossRef]

R. H. Hildebrand, J. L. Dotson, C. D. Dowell, S. R. Platt, D. Schleuning, J. A. Davidson, G. Novak, “Far-infrared polarimetry,” in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, M. R. Haas, J. A. Davidson, E. F. Erickson, eds., Vol. 73 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1995), pp. 97–104.

T. Renbarger, J. L. Dotson, G. Novak, “An estimate of telescope polarization for the SPARO experiment,” in Astrophysics from Antarctica, G. Novak, R. H. Landsberg, eds., Vol. 141 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 205–207.

Pippard, A. B.

A. B. Pippard, “The surface impedance of superconductors and normal metals. II. The anomalous skin effect in normal metals,” Proc. R. Soc. London Ser. A 191, 385–399 (1947).
[CrossRef]

Platt, S. R.

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307–318 (1997).
[CrossRef]

R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993).
[CrossRef]

G. Novak, D. P. Gonatas, S. R. Platt, R. H. Hildebrand, “A 100-μm polarimeter for the Kuiper airborne observatory,” Proc. Astron. Soc. Pac. 101, 215–224 (1989).
[CrossRef]

R. H. Hildebrand, J. L. Dotson, C. D. Dowell, S. R. Platt, D. Schleuning, J. A. Davidson, G. Novak, “Far-infrared polarimetry,” in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, M. R. Haas, J. A. Davidson, E. F. Erickson, eds., Vol. 73 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1995), pp. 97–104.

Renbarger, T.

T. Renbarger, J. L. Dotson, G. Novak, “An estimate of telescope polarization for the SPARO experiment,” in Astrophysics from Antarctica, G. Novak, R. H. Landsberg, eds., Vol. 141 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 205–207.

Reuter, G. E. H.

G. E. H. Reuter, E. H. Sondheimer, “The theory of the anomalous skin effect in metals,” Proc. R. Soc. London Ser. A 195, 336–364 (1948).
[CrossRef]

Ruze, J.

J. Ruze, “The effect of aperture errors on the antenna radiation pattern,” Nuovo Cimento Suppl. 9, 364–380 (1953).
[CrossRef]

Schleuning, D.

R. H. Hildebrand, J. L. Dotson, C. D. Dowell, S. R. Platt, D. Schleuning, J. A. Davidson, G. Novak, “Far-infrared polarimetry,” in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, M. R. Haas, J. A. Davidson, E. F. Erickson, eds., Vol. 73 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1995), pp. 97–104.

Schleuning, D. A.

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307–318 (1997).
[CrossRef]

Sondheimer, E. H.

G. E. H. Reuter, E. H. Sondheimer, “The theory of the anomalous skin effect in metals,” Proc. R. Soc. London Ser. A 195, 336–364 (1948).
[CrossRef]

Spitzer, L.

L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978).

Tao, L.

R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993).
[CrossRef]

van Gelder, A. P.

A. P. van Gelder, “Quantum corrections in the theory of the anomalous skin effect,” Phys. Rev. 187, 833–842 (1969).
[CrossRef]

Welford, W. T.

Whitcomb, S. E.

Winston, R.

Wollack, E. J.

E. J. Wollack, “A measurement of the degree scale cosmic background radiation anisotropy at 27.5, 30.5, and 33.5 GHz,” Ph.D. dissertation (Princeton University, Princeton, N.J., 1994), pp. 147–156.

Wu, X. D.

Xu, J.

J. Xu, A. E. Lange, J. J. Bock, “Far-infrared emissivity measurements of reflective surfaces,” in Submillimetre and Far-Infrared Space Instrumentation, Proceedings of the 30th ESLAB Symposium (ESTEC, Noordwijk, The Netherlands, 1996), pp. 69–72.

Appl. Opt. (2)

Astrophys. J. (2)

R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993).
[CrossRef]

M. Dragovan, “Submillimeter polarization in the Orion nebula,” Astrophys. J. 308, 270–280 (1986).
[CrossRef]

J. Appl. Phys. (2)

S. Iganaki, E. Ezura, J.-F. Liu, H. Nakanishi, “Thermal expansion and microwave surface reactance of copper for the normal to anomalous skin effect region,” J. Appl. Phys. 82, 5401–5410 (1997).
[CrossRef]

S. P. Morgan, “Effect of surface roughness on eddy current losses at microwave frequencies,” J. Appl. Phys. 20, 352–362 (1949).
[CrossRef]

J. Opt. Soc. Am. (2)

Nuovo Cimento Suppl. (1)

J. Ruze, “The effect of aperture errors on the antenna radiation pattern,” Nuovo Cimento Suppl. 9, 364–380 (1953).
[CrossRef]

Phys. Rev. (1)

A. P. van Gelder, “Quantum corrections in the theory of the anomalous skin effect,” Phys. Rev. 187, 833–842 (1969).
[CrossRef]

Physica (1)

R. B. Dingle, “The anomalous skin effect and the reflectivity of Metals. I,” Physica 19, 311–347 (1953).
[CrossRef]

Proc. Astron. Soc. Pac. (1)

G. Novak, D. P. Gonatas, S. R. Platt, R. H. Hildebrand, “A 100-μm polarimeter for the Kuiper airborne observatory,” Proc. Astron. Soc. Pac. 101, 215–224 (1989).
[CrossRef]

Proc. R. Soc. London Ser. A (3)

H. London, “The high-frequency resistance of superconducting tin,” Proc. R. Soc. London Ser. A 176, 522–533 (1940).
[CrossRef]

A. B. Pippard, “The surface impedance of superconductors and normal metals. II. The anomalous skin effect in normal metals,” Proc. R. Soc. London Ser. A 191, 385–399 (1947).
[CrossRef]

G. E. H. Reuter, E. H. Sondheimer, “The theory of the anomalous skin effect in metals,” Proc. R. Soc. London Ser. A 195, 336–364 (1948).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307–318 (1997).
[CrossRef]

Other (9)

E. J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981).

E. J. Wollack, “A measurement of the degree scale cosmic background radiation anisotropy at 27.5, 30.5, and 33.5 GHz,” Ph.D. dissertation (Princeton University, Princeton, N.J., 1994), pp. 147–156.

J. Xu, A. E. Lange, J. J. Bock, “Far-infrared emissivity measurements of reflective surfaces,” in Submillimetre and Far-Infrared Space Instrumentation, Proceedings of the 30th ESLAB Symposium (ESTEC, Noordwijk, The Netherlands, 1996), pp. 69–72.

R. H. Hildebrand, J. L. Dotson, C. D. Dowell, S. R. Platt, D. Schleuning, J. A. Davidson, G. Novak, “Far-infrared polarimetry,” in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, M. R. Haas, J. A. Davidson, E. F. Erickson, eds., Vol. 73 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1995), pp. 97–104.

L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978).

“Aluminum 6061,” in Alloy Digest, filing code Al-205 (Engineering Alloy Digest, Upper Montclair, N.J., 1973), Part 1.

H. P. Myers, Introductory Solid State Physics (Taylor & Francis, Bristol, Pa., 1981).

T. Renbarger, J. L. Dotson, G. Novak, “An estimate of telescope polarization for the SPARO experiment,” in Astrophysics from Antarctica, G. Novak, R. H. Landsberg, eds., Vol. 141 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 205–207.

“Aluminum 2024,” and “Aluminum 7075,” in Alloy Digest, filing codes Al-23 and Al-179 (Engineering Alloy Digest, Upper Montclair, N.J., 1973), part 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of the experiment. The view is from above. The radiation from a blackbody (BB) radiation source is modulated by a rotary chopper (CH). The gold-coated focusing mirror (FM) images the aperture of the blackbody onto the focal plane of the polarimeter (P). Three rays are shown. We vary the angle of incidence of the radiation at the aluminum mirror (AM) by rotating this mirror and physically moving the polarimeter. Both AM and P are mounted upon rotary milling tables, and the polarimeter mount has two additional translational degrees of freedom. As described in Section 3, we were able to measure the polarization introduced by the reflection at the AM.

Fig. 2
Fig. 2

Plots of magnitude and direction of the polarization induced by the reflection from the aluminum mirror, as a function of angle of incidence. The measurements are represented by circles and are plotted with their associated horizontal and vertical errors. They have been corrected for a systematic offset in the polarization as described in Section 3. Top, the dashed curve represents the theoretically predicted magnitude of the polarization, and a best-fit polarization magnitude is shown as a dotted curve. Bottom, the polarization angle 0° corresponds to the (theoretically expected) vertical direction. A description of the fitting technique used in determining the systematic offset and best-fit curve appears in Section 3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R 1 - 2 μ   cos   θ ω 2 π μ σ 1 / 2 ,
R 1 - 2 μ cos   θ ω 2 π μ σ 1 / 2 ,
P = R - R / R + R ,
P ω μ 2 π σ 1 / 2 sin   θ   tan   θ
q θ = a q + b q sin   θ   tan   θ ,
u θ = a u + b u sin   θ   tan   θ ,

Metrics