Abstract

Graded-reflectivity mirrors for 1064-nm wavelength have been fabricated by use of volume phase holograms recorded in photopolymer films. A method for producing such holograms for the 1064-nm radiation by use of a 532-nm light source with a short (0.1-mm) coherence length was developed. The measured peak reflectivity of the mirror reached 95%, and its super-Gaussian profile well matched that calculated based on coupled-mode theory. The mirror can withstand a peak power density greater than 108 W/cm2. This method can also be used for fabricating deflectors that direct an incident beam to any specified angle other than the angle of reflection.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1994), Chap. 5.
  2. G. Duplain, P. G. Verly, J. A. Dobrowolski, A. Waldorf, S. Bussiere, “Graded-reflectance mirrors for beam quality control in laser resonators,” Appl. Opt. 32, 1145–1167 (1993).
    [CrossRef] [PubMed]
  3. C. B. Burckhardt, “Efficiency of dielectric grating,” J. Opt. Soc. Am. 57, 601–603 (1967).
    [CrossRef]
  4. M. B. Fleming, M. C. Hutley, “Blazed diffractive optics,” Appl. Opt. 36, 4635–4643 (1997).
    [CrossRef] [PubMed]
  5. G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 20, 4666–4674 (1997).
    [CrossRef]
  6. A. Yariv, P. Yeh, Optical Wave in Crystals (Wiley, New York, 1983), pp. 177–188.
  7. W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 13–25 (1993).

1997 (2)

M. B. Fleming, M. C. Hutley, “Blazed diffractive optics,” Appl. Opt. 36, 4635–4643 (1997).
[CrossRef] [PubMed]

G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 20, 4666–4674 (1997).
[CrossRef]

1993 (1)

1967 (1)

Behrmann, G. P.

G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 20, 4666–4674 (1997).
[CrossRef]

Burckhardt, C. B.

Bussiere, S.

Dobrowolski, J. A.

Duignan, M. T.

G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 20, 4666–4674 (1997).
[CrossRef]

Duplain, G.

Fleming, M. B.

Gambogi, W. J.

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 13–25 (1993).

Hutley, M. C.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1994), Chap. 5.

Trout, T. J.

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 13–25 (1993).

Verly, P. G.

Waldorf, A.

Weber, A. M.

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 13–25 (1993).

Yariv, A.

A. Yariv, P. Yeh, Optical Wave in Crystals (Wiley, New York, 1983), pp. 177–188.

Yeh, P.

A. Yariv, P. Yeh, Optical Wave in Crystals (Wiley, New York, 1983), pp. 177–188.

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

Other (3)

A. Yariv, P. Yeh, Optical Wave in Crystals (Wiley, New York, 1983), pp. 177–188.

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 13–25 (1993).

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1994), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of creation of a volume phase hologram.

Fig. 2
Fig. 2

Volume phase hologram as a deflector.

Fig. 3
Fig. 3

Schematic of the prism system for making a hologram.

Fig. 4
Fig. 4

Schematic of the experimental setup.

Fig. 5
Fig. 5

Transmittance of the reflector.

Fig. 6
Fig. 6

Measured (filled circles) and calculated (filled triangles) reflectivity profiles (a) with Δn = 0.03 and (b) with Δn = 0.023.

Fig. 7
Fig. 7

Measured (filled circles) and calculated (filled triangles) super-Gaussian profiles.

Fig. 8
Fig. 8

Reflectivity of a mirror with a flat profile.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d = λ m / n m ( 2   sin Θ 2 f m + Θ 1 f m / 2 ) - 1 ,
2 d   sin   Θ f = λ m / n m sin   Θ f ( sin Θ 2 f m + Θ 1 f m / 2 ) - 1 = λ w / n w ,
Θ 1 f w - Θ 2 f w = 2 Θ L = Θ 1 f m - Θ 2 f m ,
Θ 2 f w + Θ 1 f w = 2 Θ f = 2   sin - 1 ( λ w n m / λ m n W × sin Θ 2 f m + Θ 1 f m / 2 ) .
Θ 1 a w = sin - 1 n w sin   Θ 1 f w ,
Θ 2 a w = sin - 1 n w sin   Θ 2 f w .
M = cos   α   cos   β / cos   α   cos   β ,
n z = n 0 + Δ n   sin   2 π z / d ,
R = tanh 2 2 π Δ nL / λ m ,
R = tanh 2 2 π Δ n exp - r 2 / w 2 L / λ m .
R = R 0 exp - r / w 3 ,

Metrics