Abstract

The complete 16-element Mueller matrices for backscattering from amino acids, sugars, and other enantiomorphic compounds pressed into wafer form were measured at infrared wavelengths. For each compound a pair of CO2 laser lines was selected from the 9.1–11.6-μm region such that one line excited an absorption band in the compound, whereas the other did not. It was observed that at least some of the matrix elements differed significantly depending on which of the two wavelengths was used in the measurement. We propose that a neural network pattern recognition system can be trained to detect the presence of specific compounds based on multiwavelength backscatter Mueller matrix measurements.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Azzam, “Polarimeter,” U.S. patent4,306,809 (22December1981).
  2. B. DeVolk, F. Allen, C. D. Newman, R. J. Fraatz, “Particle identifying apparatus,” U.S. patent4,953,980 (4September1990).
  3. G. C. Salzman, C. T. Gregg, W. K. Grace, R. D. Hiebert, “Biological particle identification apparatus,” U.S. patent4,884,886 (12December1989).
  4. D. H. Goldstein, “Infrared laser polarimeter,” U.S. patent5,247,176 (21September1993).
  5. A. H. Carrieri, “Earth monitoring satellite system for chemical and biological defense,” U.S. patent5,659,391 (19August1997).
  6. A. H. Carrieri, “Panoramic infrared-imaging spectroradiometer with reverse phase-modulation beam broadcasting,” U.S. patent5,708,503 (13January1998).
  7. A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
    [CrossRef]
  8. R. C. Thompson, J. R. Bottiger, E. S. Fry, “Measurement of polarized light interactions via the Mueller matrix,” Appl. Opt. 19, 1323–1329 (1980).
    [CrossRef] [PubMed]
  9. E. Wold, J. Bremer, “Mueller matrix analysis of infrared ellipsometry,” Appl. Opt. 33, 5982–5993 (1994).
    [CrossRef] [PubMed]
  10. D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, A. Chipman, eds., Proc. SPIE1746, 231–245 (1992).
    [CrossRef]
  11. M. A. F. Thiel, “Error calculation of polarization measurements,” J. Opt. Soc. Am. 66, 65–67 (1976).
    [CrossRef]
  12. D. H. Goldman, R. A. Chipman, D. B. Chenault, R. R. Hodgson, “Infrared material property measurements with polarimetry and spectropolarimetry,” in Electro-Optic Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartman, M. J. Soileau, K. Varadan, eds., Proc. SPIE1307, 448–462 (1990).
    [CrossRef]
  13. D. H. Goldman, R. A. Chipman, D. B. Chenault, “Spectropolarimetry of electro-optical materials,” in Polarization Considerations for Optical Systems, R. A. Chipman, ed., Proc. SPIE891, 56–73 (1988).
    [CrossRef]
  14. A. Röseler, “Die Anwendung der Mueller matrix auf die spektroskopische Infrarot-Ellipsometrie mit dem Fourierspektrometer,” Optik (Stuttgart) 61, 177–186 (1981).
  15. A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).
  16. G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1945), Vol. 2.
  17. D. C. Tyte, “Carbon dioxide lasers,” in Advances in Quantum Electronics, D. W. Goodwin, ed. (Academic, London, 1970), Vol. 1.
  18. R. J. Keller, ed., The Sigma Library of FT-IR Spectra, 1st ed. (Sigma Chemical Co., St. Louis, MO., 1986), Vols. 1–2.
  19. C. J. Pouchert, ed., The Aldrich Library of FT-IR Spectra, 1st ed., (Aldrich Chemical Company, Inc., Milwaukee, Wis., 1989), Vols. 1–3.

1994 (1)

1981 (1)

A. Röseler, “Die Anwendung der Mueller matrix auf die spektroskopische Infrarot-Ellipsometrie mit dem Fourierspektrometer,” Optik (Stuttgart) 61, 177–186 (1981).

1980 (1)

1976 (1)

1973 (1)

A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[CrossRef]

Allen, F.

B. DeVolk, F. Allen, C. D. Newman, R. J. Fraatz, “Particle identifying apparatus,” U.S. patent4,953,980 (4September1990).

Azzam, R. M.

R. M. Azzam, “Polarimeter,” U.S. patent4,306,809 (22December1981).

Bottiger, J. R.

R. C. Thompson, J. R. Bottiger, E. S. Fry, “Measurement of polarized light interactions via the Mueller matrix,” Appl. Opt. 19, 1323–1329 (1980).
[CrossRef] [PubMed]

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Bremer, J.

Carrieri, A. H.

A. H. Carrieri, “Panoramic infrared-imaging spectroradiometer with reverse phase-modulation beam broadcasting,” U.S. patent5,708,503 (13January1998).

A. H. Carrieri, “Earth monitoring satellite system for chemical and biological defense,” U.S. patent5,659,391 (19August1997).

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Chenault, D. B.

D. H. Goldman, R. A. Chipman, D. B. Chenault, “Spectropolarimetry of electro-optical materials,” in Polarization Considerations for Optical Systems, R. A. Chipman, ed., Proc. SPIE891, 56–73 (1988).
[CrossRef]

D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, A. Chipman, eds., Proc. SPIE1746, 231–245 (1992).
[CrossRef]

D. H. Goldman, R. A. Chipman, D. B. Chenault, R. R. Hodgson, “Infrared material property measurements with polarimetry and spectropolarimetry,” in Electro-Optic Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartman, M. J. Soileau, K. Varadan, eds., Proc. SPIE1307, 448–462 (1990).
[CrossRef]

Chipman, R. A.

D. H. Goldman, R. A. Chipman, D. B. Chenault, R. R. Hodgson, “Infrared material property measurements with polarimetry and spectropolarimetry,” in Electro-Optic Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartman, M. J. Soileau, K. Varadan, eds., Proc. SPIE1307, 448–462 (1990).
[CrossRef]

D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, A. Chipman, eds., Proc. SPIE1746, 231–245 (1992).
[CrossRef]

D. H. Goldman, R. A. Chipman, D. B. Chenault, “Spectropolarimetry of electro-optical materials,” in Polarization Considerations for Optical Systems, R. A. Chipman, ed., Proc. SPIE891, 56–73 (1988).
[CrossRef]

DeVolk, B.

B. DeVolk, F. Allen, C. D. Newman, R. J. Fraatz, “Particle identifying apparatus,” U.S. patent4,953,980 (4September1990).

Fraatz, R. J.

B. DeVolk, F. Allen, C. D. Newman, R. J. Fraatz, “Particle identifying apparatus,” U.S. patent4,953,980 (4September1990).

Fry, E. S.

Goldman, D. H.

D. H. Goldman, R. A. Chipman, D. B. Chenault, R. R. Hodgson, “Infrared material property measurements with polarimetry and spectropolarimetry,” in Electro-Optic Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartman, M. J. Soileau, K. Varadan, eds., Proc. SPIE1307, 448–462 (1990).
[CrossRef]

D. H. Goldman, R. A. Chipman, D. B. Chenault, “Spectropolarimetry of electro-optical materials,” in Polarization Considerations for Optical Systems, R. A. Chipman, ed., Proc. SPIE891, 56–73 (1988).
[CrossRef]

Goldstein, D. H.

D. H. Goldstein, “Infrared laser polarimeter,” U.S. patent5,247,176 (21September1993).

Grace, W. K.

G. C. Salzman, C. T. Gregg, W. K. Grace, R. D. Hiebert, “Biological particle identification apparatus,” U.S. patent4,884,886 (12December1989).

Gregg, C. T.

G. C. Salzman, C. T. Gregg, W. K. Grace, R. D. Hiebert, “Biological particle identification apparatus,” U.S. patent4,884,886 (12December1989).

Haugland, S. M.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Henry, C. E.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1945), Vol. 2.

Herzinger, C. M.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Hiebert, R. D.

G. C. Salzman, C. T. Gregg, W. K. Grace, R. D. Hiebert, “Biological particle identification apparatus,” U.S. patent4,884,886 (12December1989).

Hodgson, R. R.

D. H. Goldman, R. A. Chipman, D. B. Chenault, R. R. Hodgson, “Infrared material property measurements with polarimetry and spectropolarimetry,” in Electro-Optic Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartman, M. J. Soileau, K. Varadan, eds., Proc. SPIE1307, 448–462 (1990).
[CrossRef]

Huffman, D. R.

A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[CrossRef]

Hunt, A. J.

A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[CrossRef]

Jensen, J. L.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Jensen, J. O.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Newman, C. D.

B. DeVolk, F. Allen, C. D. Newman, R. J. Fraatz, “Particle identifying apparatus,” U.S. patent4,953,980 (4September1990).

Owens, D. J.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Pezzaniti, J. L.

D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, A. Chipman, eds., Proc. SPIE1746, 231–245 (1992).
[CrossRef]

Röseler, A.

A. Röseler, “Die Anwendung der Mueller matrix auf die spektroskopische Infrarot-Ellipsometrie mit dem Fourierspektrometer,” Optik (Stuttgart) 61, 177–186 (1981).

Salzman, G. C.

G. C. Salzman, C. T. Gregg, W. K. Grace, R. D. Hiebert, “Biological particle identification apparatus,” U.S. patent4,884,886 (12December1989).

Schmidt, K. E.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Thiel, M. A. F.

Thompson, R. C.

Tyte, D. C.

D. C. Tyte, “Carbon dioxide lasers,” in Advances in Quantum Electronics, D. W. Goodwin, ed. (Academic, London, 1970), Vol. 1.

Wold, E.

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Optik (Stuttgart) (1)

A. Röseler, “Die Anwendung der Mueller matrix auf die spektroskopische Infrarot-Ellipsometrie mit dem Fourierspektrometer,” Optik (Stuttgart) 61, 177–186 (1981).

Rev. Sci. Instrum. (1)

A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[CrossRef]

Other (14)

D. H. Goldman, R. A. Chipman, D. B. Chenault, R. R. Hodgson, “Infrared material property measurements with polarimetry and spectropolarimetry,” in Electro-Optic Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartman, M. J. Soileau, K. Varadan, eds., Proc. SPIE1307, 448–462 (1990).
[CrossRef]

D. H. Goldman, R. A. Chipman, D. B. Chenault, “Spectropolarimetry of electro-optical materials,” in Polarization Considerations for Optical Systems, R. A. Chipman, ed., Proc. SPIE891, 56–73 (1988).
[CrossRef]

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1945), Vol. 2.

D. C. Tyte, “Carbon dioxide lasers,” in Advances in Quantum Electronics, D. W. Goodwin, ed. (Academic, London, 1970), Vol. 1.

R. J. Keller, ed., The Sigma Library of FT-IR Spectra, 1st ed. (Sigma Chemical Co., St. Louis, MO., 1986), Vols. 1–2.

C. J. Pouchert, ed., The Aldrich Library of FT-IR Spectra, 1st ed., (Aldrich Chemical Company, Inc., Milwaukee, Wis., 1989), Vols. 1–3.

D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, A. Chipman, eds., Proc. SPIE1746, 231–245 (1992).
[CrossRef]

R. M. Azzam, “Polarimeter,” U.S. patent4,306,809 (22December1981).

B. DeVolk, F. Allen, C. D. Newman, R. J. Fraatz, “Particle identifying apparatus,” U.S. patent4,953,980 (4September1990).

G. C. Salzman, C. T. Gregg, W. K. Grace, R. D. Hiebert, “Biological particle identification apparatus,” U.S. patent4,884,886 (12December1989).

D. H. Goldstein, “Infrared laser polarimeter,” U.S. patent5,247,176 (21September1993).

A. H. Carrieri, “Earth monitoring satellite system for chemical and biological defense,” U.S. patent5,659,391 (19August1997).

A. H. Carrieri, “Panoramic infrared-imaging spectroradiometer with reverse phase-modulation beam broadcasting,” U.S. patent5,708,503 (13January1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical layout of the Mueller matrix detection system for the present feasibility study. L1, L2, L3, and L4, grating-tuned continuous-wave CO2 lasers; P, Ge stacked-plate linear polarizers (extinction ratio >2000:1); RS, rotary stage (stepper-motor controlled); TS, one-axis translation stage (stepper-motor controlled); TTS, two-axis translation stage (stepper-motor controlled); BS, 0.1% reflectance beam splitter; SA, optical spectrum analyzer; VF, variable neutral-density filter; PCD, photoconductive HgCdTe detector and Dewar; A, matched amplifier; QWP, quarter-wave plate; PEM, photoelastic modulator; SS, sample stage for beam backscattering; M1 and M2, flat steering mirrors; MM, double-sided flat mirror, S1–S4, shutters; CH, chopper; PR, power radiometer; and FL, focusing lens.

Fig. 2
Fig. 2

Graphic representation of the raw experimental data of the normalized Mueller matrix elements as a function of backscattering orientation for the organic compound L-tartaric acid off and on vibration resonance (solid curve 1029.9 cm-1 and dotted curve 1082.3 cm-1, respectively). Filtered and scaled difference elements [1,3], [2,1], [3,1], [3,4], and [4,3] are features for the standoff detection of this organic compound.

Tables (3)

Tables Icon

Table 1 Axial Orientations of the Polarimeter’s Linear Polarizer and Photoelastic Modulator (PEM) Opticsa

Tables Icon

Table 2 Configurations in which the Mueller Matrix Elements are Accessible for Measurementa

Tables Icon

Table 3 Measured Polarization Signatures of Some Organic Wafersa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ = δ 0 cos   ω t .
I f / k = M 11 - M 12 cos δ 0 cos   ω 1 t - M 14 sin δ 0 cos   ω 1 t - M 21 cos δ 0 cos   ω 2 t + M 22 cos δ 0 cos   ω 2 t cos δ 0 cos   ω 1 t + M 24 cos δ 0 cos   ω 2 t sin δ 0 cos   ω 1 t - M 41 sin δ 0 cos   ω 2 t + M 42 sin δ 0 cos   ω 2 t cos δ 0 cos   ω 1 t + M 44 sin δ 0 cos   ω 2 t sin δ 0 cos   ω 1 t ,
I f / k = M 11 - 0.520 M 14 cos ω 1 t + 0.431 M 12 cos 2 ω 1 t + 0.431 M 21 cos 2 ω 2 t + 0.186 M 22 × cos 2 ω 2 t ± 2 ω 1 t - 0.224 M 24 × cos 2 ω 2 t ± ω 1 t - 0.520 M 41 × cos ω 2 t - 0.224 M 42 cos ω 2 t ± 2 ω 1 t + 0.270 M 44 cos ω 2 t ± ω 1 t + C n , m M ij × cos ± n ω 2 t ± m ω 1 t ,
Δ M i , j s = Δ M i , j α ,   λ o ,   λ r - Δ M i , j α ,   λ o ,   λ r / 4 * SD ,

Metrics