Abstract

The Limb Profile Monitor of the Atmosphere (LPMA) instrument is a Fourier transform spectrometer designed to record stratospheric (and in some cases tropospheric) absorption spectra from a balloon gondola. This spectrometer operates with two-detector output optics (photoconductive HgCdTe and photovoltaic InSb, liquid-nitrogen cooled). The response of the HgCdTe detector becomes nonlinear for high photon fluxes, which is the case for solar occultation. We have designed a processing scheme, based on the minimization of out-of-optical-band spectral artifacts, to correct for the effect of nonlinearity in the useful spectral range. The method is explained, and sample results are presented for spectra recorded in different balloon flight conditions and with two different HgCdTe detectors.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).
  2. S. Payan, C. Camy-Peyret, P. Jeseck, G. Durry, T. Hawat, F. Lefevre, “HCl and ClONO2 profiles in the late vortex during SESAME,” in Polar Stratospheric Ozone, Air Pollution Research Rep. 56, J. A. Pyle, N. R. P. Harris, G. T. Amanatidis, eds. (European Community, Luxembourg, 1996), pp. 280–285.
  3. G. Guelachvili, “Distortions in Fourier spectra and diagnosis,” in Spectrometric Techniques, G. Vanasse, ed. (Academic, New York, 1981), Vol. II, pp. 1–62.
  4. G. Guelachvili, “Distortion free interferograms in Fourier transform spectroscopy with nonlinear detectors,” Appl. Opt. 25, 4644–4648 (1986).
    [CrossRef] [PubMed]
  5. P. R. Griffiths, J. A. de Haseth, in Fourier Transform Infrared Spectrometry, P. J. Elving, J. D. Winefordner, eds. (Wiley-Interscience, New York, 1986), pp. 93–97.
  6. M. L. Forman, W. H. Steel, G. A. Vanasse, “Correction of asymmetric interferograms obtained in Fourier spectroscopy,” J. Opt. Soc. Am. 56, 59–63 (1966).
    [CrossRef]
  7. M. C. Abrams, G. C. Toon, R. A. Schindler, “Practical example of the correction of Fourier-transform spectra for detector nonlinearity,” Appl. Opt. 33, 6307–6314 (1994).
    [CrossRef] [PubMed]

1995

C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).

1994

1986

1966

Abrams, M. C.

Berubé, G.

C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).

Camy-Peyret, C.

C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).

S. Payan, C. Camy-Peyret, P. Jeseck, G. Durry, T. Hawat, F. Lefevre, “HCl and ClONO2 profiles in the late vortex during SESAME,” in Polar Stratospheric Ozone, Air Pollution Research Rep. 56, J. A. Pyle, N. R. P. Harris, G. T. Amanatidis, eds. (European Community, Luxembourg, 1996), pp. 280–285.

de Haseth, J. A.

P. R. Griffiths, J. A. de Haseth, in Fourier Transform Infrared Spectrometry, P. J. Elving, J. D. Winefordner, eds. (Wiley-Interscience, New York, 1986), pp. 93–97.

Durry, G.

C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).

S. Payan, C. Camy-Peyret, P. Jeseck, G. Durry, T. Hawat, F. Lefevre, “HCl and ClONO2 profiles in the late vortex during SESAME,” in Polar Stratospheric Ozone, Air Pollution Research Rep. 56, J. A. Pyle, N. R. P. Harris, G. T. Amanatidis, eds. (European Community, Luxembourg, 1996), pp. 280–285.

Forman, M. L.

Griffiths, P. R.

P. R. Griffiths, J. A. de Haseth, in Fourier Transform Infrared Spectrometry, P. J. Elving, J. D. Winefordner, eds. (Wiley-Interscience, New York, 1986), pp. 93–97.

Guelachvili, G.

G. Guelachvili, “Distortion free interferograms in Fourier transform spectroscopy with nonlinear detectors,” Appl. Opt. 25, 4644–4648 (1986).
[CrossRef] [PubMed]

G. Guelachvili, “Distortions in Fourier spectra and diagnosis,” in Spectrometric Techniques, G. Vanasse, ed. (Academic, New York, 1981), Vol. II, pp. 1–62.

Hawat, T.

C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).

S. Payan, C. Camy-Peyret, P. Jeseck, G. Durry, T. Hawat, F. Lefevre, “HCl and ClONO2 profiles in the late vortex during SESAME,” in Polar Stratospheric Ozone, Air Pollution Research Rep. 56, J. A. Pyle, N. R. P. Harris, G. T. Amanatidis, eds. (European Community, Luxembourg, 1996), pp. 280–285.

Huguenin, D.

C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).

Jeseck, P.

C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).

S. Payan, C. Camy-Peyret, P. Jeseck, G. Durry, T. Hawat, F. Lefevre, “HCl and ClONO2 profiles in the late vortex during SESAME,” in Polar Stratospheric Ozone, Air Pollution Research Rep. 56, J. A. Pyle, N. R. P. Harris, G. T. Amanatidis, eds. (European Community, Luxembourg, 1996), pp. 280–285.

Lefevre, F.

S. Payan, C. Camy-Peyret, P. Jeseck, G. Durry, T. Hawat, F. Lefevre, “HCl and ClONO2 profiles in the late vortex during SESAME,” in Polar Stratospheric Ozone, Air Pollution Research Rep. 56, J. A. Pyle, N. R. P. Harris, G. T. Amanatidis, eds. (European Community, Luxembourg, 1996), pp. 280–285.

Payan, S.

C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).

S. Payan, C. Camy-Peyret, P. Jeseck, G. Durry, T. Hawat, F. Lefevre, “HCl and ClONO2 profiles in the late vortex during SESAME,” in Polar Stratospheric Ozone, Air Pollution Research Rep. 56, J. A. Pyle, N. R. P. Harris, G. T. Amanatidis, eds. (European Community, Luxembourg, 1996), pp. 280–285.

Rochette, L.

C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).

Schindler, R. A.

Steel, W. H.

Toon, G. C.

Vanasse, G. A.

Appl. Opt.

European Space Agency Publication SP

C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, “The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents,” European Space Agency Publication SP 370, 323–328 (1995).

J. Opt. Soc. Am.

Other

S. Payan, C. Camy-Peyret, P. Jeseck, G. Durry, T. Hawat, F. Lefevre, “HCl and ClONO2 profiles in the late vortex during SESAME,” in Polar Stratospheric Ozone, Air Pollution Research Rep. 56, J. A. Pyle, N. R. P. Harris, G. T. Amanatidis, eds. (European Community, Luxembourg, 1996), pp. 280–285.

G. Guelachvili, “Distortions in Fourier spectra and diagnosis,” in Spectrometric Techniques, G. Vanasse, ed. (Academic, New York, 1981), Vol. II, pp. 1–62.

P. R. Griffiths, J. A. de Haseth, in Fourier Transform Infrared Spectrometry, P. J. Elving, J. D. Winefordner, eds. (Wiley-Interscience, New York, 1986), pp. 93–97.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Onboard processing: unfiltered interferogram I UF,LG recorded with the low-gain ADC (8192 points near ZPD), unfiltered interferogram I UF,HG recorded with the high-gain ADC (8192 points), interferogram I FA,HG filtered with the first numerical filter (region A) and recorded with the high-gain ADC, interferogram I FB,HG filtered with the second numerical filter (region B) and recorded with the same ADC as that for I FA,HG .

Fig. 2
Fig. 2

Simulation of the nonlinearity in the case of a dual bandpass optical filter (see Table 1): (a) optical filter, (b) result for a quadratic nonlinearity, (c) result for a cubic nonlinearity. One can note the out-of-optical-band artifact at two times the mean optical frequency in the case of a quadratic nonlinearity (artifacts are normalized to 1 at their maximum).

Fig. 3
Fig. 3

Spectrum recorded at high altitude (≈29.7 km) with and without a nonlinearity correction. One can note the artifact that is due to the quadratic nonlinearity at two times the mean optical frequency and at low frequency. The integrated signal under the two artifacts is approximately 5%–7% of the total signal.

Fig. 4
Fig. 4

Nonlinearity correction scheme.

Fig. 5
Fig. 5

Consistent final high-gain unfiltered interferogram ( I UF , HG f ) recorded from high altitude (≈29.7 km with a positive solar elevation ≈2°). I cor is the nonlinearity-corrected interferogram, and I raw is the raw interferogram. One can note the rapid decrease of the nonlinearity correction after ZPD (the correction is already lower than 1% at 500 samples after ZPD for a quadratic nonlinearity coefficient α = 1.22 × 10-6).

Fig. 6
Fig. 6

Spectrum at low resolution (10 cm-1) recorded from high altitude (≈29.7 km) with a positive solar elevation (≈2°). S cor is the nonlinearity-corrected spectrum, and S raw is the raw spectrum. The effect of the nonlinearity correction is of the order of 3% but with some variation along the spectral interval.

Fig. 7
Fig. 7

ClONO2 microwindow near 780.2 cm-1 cm-1 for a tangent height of 22.14 km. The nonlinearity correction does not affect the high-resolution features but changes the envelope of the spectrum (correction of approximately 2% for this example).

Tables (2)

Tables Icon

Table 1 General Characteristics of the LPMA Instrument

Tables Icon

Table 2 Configuration and Average Value of the Quadratic Nonlinearity Coefficient for Several LPMA Flights

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I UF C = I UF , HG f - α I UF , HG f 2 - β I UF , HG f 3 .

Metrics