Abstract

The scattering and backscattering properties of bubble populations in the upper ocean are estimated with Mie theory and a generalized bubble size spectrum based on in situ observations. Optical properties of both clean bubbles and bubbles coated with an organic film are analyzed; the results are compared with the corresponding optical properties of micro-organisms of similar size. Given a bubble number density (from ∼105 to ∼107 m-3) frequently found at sea, the bubble populations significantly influence the scattering process in the ocean, especially in oligotrophic waters. Bubbles appear to make a large contribution to the missing terms in constructing the observed total backscattering coefficient of the ocean. This contribution to backscattering is strongly enhanced if the bubbles are coated with organic film. The injection of bubbles will shift ocean color toward the green, resembling phytoplankton blooms, and hence introducing error in ocean color remote sensing if its effect is not corrected.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription