Abstract

Analytic models, based on a convolution of a Fabry–Perot etalon transfer function with a Gaussian spectral source, are developed for the shot-noise-limited measurement precision of Doppler wind lidars based on the edge filter technique by use of either molecular or aerosol atmospheric backscatter. The Rayleigh backscatter formulation yields a map of theoretical sensitivity versus etalon parameters, permitting design optimization and showing that the optimal system will have a Doppler measurement uncertainty no better than approximately 2.4 times that of a perfect, lossless receiver. An extension of the models to include the effect of limited etalon aperture leads to a condition for the minimum aperture required to match light collection optics. It is shown that, depending on the choice of operating point, the etalon aperture finesse must be 4–15 to avoid degradation of measurement precision. A convenient, closed-form expression for the measurement precision is obtained for spectrally narrow backscatter and is shown to be useful for backscatter that is spectrally broad as well. The models are extended to include extrinsic noise, such as solar background or the Rayleigh background on an aerosol Doppler lidar. A comparison of the model predictions with experiment has not yet been possible, but a comparison with detailed instrument modeling by McGill and Spinhirne shows satisfactory agreement. The models derived here will be more conveniently implemented than McGill and Spinhirne’s and more readily permit physical insights to the optimization and limitations of the double-edge technique.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
    [CrossRef]
  2. K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
    [CrossRef]
  3. R. Targ, R. L. Bowles, C. L. Korb, B. M. Gentry, D. Souilhac, “Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement,” in Image Understanding for Aerospace Applications, H. N. Nasr, ed., Proc. SPIE1521, 144–157 (1991).
    [CrossRef]
  4. Zhi-shen Liu, Wei-biao Chen, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).
    [CrossRef]
  5. M. J. McGill, J. D. Spinhirne, “A comparison of two direct-detection Doppler lidar techniques,” Opt. Eng.37, (1998).
  6. J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging techniques,” Appl. Opt. 37, 6487–6493 (1998).
    [CrossRef]
  7. M. L. Chanin, A. Garnier, A. Hauchecorn, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  8. C. L. Korb, B. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324; C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
    [CrossRef] [PubMed]
  9. B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
    [CrossRef] [PubMed]
  10. C. L. Korb, B. M. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
    [CrossRef] [PubMed]
  11. A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
    [CrossRef]
  12. M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
    [CrossRef]
  13. C. Flesia, C. L. Korb are preparing the following paper for publication: “Theory of the double-edge molecular technique for Doppler lidar wind measurement.” C. Flesia, Université de Genève, 1211 Genève 04, Switzerland (personal communication, 1998).
  14. G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, UK, 1988), Eq. 2.2.2b.
  15. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
    [CrossRef]
  16. C. S. Gardner, “Optical remote sensing techniques for measuring winds: a comparison of theoretical performance capabilities,” viewgraph presentation at Winds ’97, the Third Workshop on Wind Measurements in the Middle Atmosphere, Ann Arbor, Mich.6–9 October 1997; C. S. Gardner, University of Illinois, Urbana, Ill. 61801 (personal communication, 1997).
  17. B. J. Rye, “Comparative precision of distributed-backscatter Doppler lidars,” Appl. Opt. 34, 8341–8344 (1995).
    [CrossRef] [PubMed]
  18. D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
    [CrossRef]
  19. D. M. Rust, “Etalon filters,” Opt. Eng. 33, 3342–3348 (1994).
    [CrossRef]
  20. J. A. McKay, “The edge filter and fringe imaging for laser Doppler wind speed measurement,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 420–427 (1997).
    [CrossRef]
  21. J. A. McKay, T. D. Wilkerson, “Direct detection wind speed Doppler lidar systems,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 42–52 (1997).
    [CrossRef]
  22. W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
    [CrossRef]
  23. M. J. McGill, NASA-Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 1997).
  24. M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
    [CrossRef] [PubMed]

1998 (2)

M. J. McGill, J. D. Spinhirne, “A comparison of two direct-detection Doppler lidar techniques,” Opt. Eng.37, (1998).

J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging techniques,” Appl. Opt. 37, 6487–6493 (1998).
[CrossRef]

1997 (2)

1996 (2)

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

1995 (2)

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

B. J. Rye, “Comparative precision of distributed-backscatter Doppler lidars,” Appl. Opt. 34, 8341–8344 (1995).
[CrossRef] [PubMed]

1994 (3)

D. M. Rust, “Etalon filters,” Opt. Eng. 33, 3342–3348 (1994).
[CrossRef]

B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
[CrossRef] [PubMed]

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

1993 (1)

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

1992 (1)

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

1989 (1)

M. L. Chanin, A. Garnier, A. Hauchecorn, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Abreu, V. J.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Barnes, J. E.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Bowles, R. L.

R. Targ, R. L. Bowles, C. L. Korb, B. M. Gentry, D. Souilhac, “Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement,” in Image Understanding for Aerospace Applications, H. N. Nasr, ed., Proc. SPIE1521, 144–157 (1991).
[CrossRef]

Chanin, M. L.

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorn, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Chen, Wei-biao

Zhi-shen Liu, Wei-biao Chen, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).
[CrossRef]

Fischer, K. F.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Flesia, C.

C. Flesia, C. L. Korb are preparing the following paper for publication: “Theory of the double-edge molecular technique for Doppler lidar wind measurement.” C. Flesia, Université de Genève, 1211 Genève 04, Switzerland (personal communication, 1998).

C. Flesia, C. L. Korb are preparing the following paper for publication: “Theory of the double-edge molecular technique for Doppler lidar wind measurement.” C. Flesia, Université de Genève, 1211 Genève 04, Switzerland (personal communication, 1998).

Fricke, K.-H.

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

Gardner, C. S.

C. S. Gardner, “Optical remote sensing techniques for measuring winds: a comparison of theoretical performance capabilities,” viewgraph presentation at Winds ’97, the Third Workshop on Wind Measurements in the Middle Atmosphere, Ann Arbor, Mich.6–9 October 1997; C. S. Gardner, University of Illinois, Urbana, Ill. 61801 (personal communication, 1997).

Garnier, A.

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorn, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Gentry, B.

C. L. Korb, B. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324; C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

Gentry, B. M.

C. L. Korb, B. M. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
[CrossRef] [PubMed]

B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
[CrossRef] [PubMed]

R. Targ, R. L. Bowles, C. L. Korb, B. M. Gentry, D. Souilhac, “Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement,” in Image Understanding for Aerospace Applications, H. N. Nasr, ed., Proc. SPIE1521, 144–157 (1991).
[CrossRef]

Hair, J. W.

Zhi-shen Liu, Wei-biao Chen, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).
[CrossRef]

Hardesty, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

Hauchecorn, A.

M. L. Chanin, A. Garnier, A. Hauchecorn, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Hauchecorne, A.

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

Hays, P. B.

W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
[CrossRef]

Hernandez, G.

G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, UK, 1988), Eq. 2.2.2b.

Huffaker, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

Irgang, T. D.

M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[CrossRef] [PubMed]

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Korb, C. L.

C. L. Korb, B. M. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
[CrossRef] [PubMed]

B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
[CrossRef] [PubMed]

R. Targ, R. L. Bowles, C. L. Korb, B. M. Gentry, D. Souilhac, “Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement,” in Image Understanding for Aerospace Applications, H. N. Nasr, ed., Proc. SPIE1521, 144–157 (1991).
[CrossRef]

C. L. Korb, B. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324; C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

C. Flesia, C. L. Korb are preparing the following paper for publication: “Theory of the double-edge molecular technique for Doppler lidar wind measurement.” C. Flesia, Université de Genève, 1211 Genève 04, Switzerland (personal communication, 1998).

Li, S. X.

Liu, Zhi-shen

Zhi-shen Liu, Wei-biao Chen, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).
[CrossRef]

Lloyd, N. D.

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

McGill, M. J.

M. J. McGill, J. D. Spinhirne, “A comparison of two direct-detection Doppler lidar techniques,” Opt. Eng.37, (1998).

M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[CrossRef] [PubMed]

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

M. J. McGill, NASA-Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 1997).

McKay, J. A.

J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging techniques,” Appl. Opt. 37, 6487–6493 (1998).
[CrossRef]

J. A. McKay, “The edge filter and fringe imaging for laser Doppler wind speed measurement,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 420–427 (1997).
[CrossRef]

J. A. McKay, T. D. Wilkerson, “Direct detection wind speed Doppler lidar systems,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 42–52 (1997).
[CrossRef]

Nedelikovic, D.

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

Nelke, G.

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

Porteneuve, J.

M. L. Chanin, A. Garnier, A. Hauchecorn, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Rees, D.

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

Rust, D. M.

D. M. Rust, “Etalon filters,” Opt. Eng. 33, 3342–3348 (1994).
[CrossRef]

Rye, B. J.

B. J. Rye, “Comparative precision of distributed-backscatter Doppler lidars,” Appl. Opt. 34, 8341–8344 (1995).
[CrossRef] [PubMed]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

She, C. Y.

Zhi-shen Liu, Wei-biao Chen, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).
[CrossRef]

Singer, W.

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

Skinner, W. R.

M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[CrossRef] [PubMed]

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
[CrossRef]

Souilhac, D.

R. Targ, R. L. Bowles, C. L. Korb, B. M. Gentry, D. Souilhac, “Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement,” in Image Understanding for Aerospace Applications, H. N. Nasr, ed., Proc. SPIE1521, 144–157 (1991).
[CrossRef]

Spinhirne, J. D.

M. J. McGill, J. D. Spinhirne, “A comparison of two direct-detection Doppler lidar techniques,” Opt. Eng.37, (1998).

Targ, R.

R. Targ, R. L. Bowles, C. L. Korb, B. M. Gentry, D. Souilhac, “Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement,” in Image Understanding for Aerospace Applications, H. N. Nasr, ed., Proc. SPIE1521, 144–157 (1991).
[CrossRef]

von Cossart, G.

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

von Zahn, U.

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

Wilkerson, T. D.

J. A. McKay, T. D. Wilkerson, “Direct detection wind speed Doppler lidar systems,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 42–52 (1997).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

Geophys. Res. Lett. (1)

M. L. Chanin, A. Garnier, A. Hauchecorn, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (1)

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

J. Atmos. Terr. Phys. (2)

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

Opt. Eng. (3)

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

M. J. McGill, J. D. Spinhirne, “A comparison of two direct-detection Doppler lidar techniques,” Opt. Eng.37, (1998).

D. M. Rust, “Etalon filters,” Opt. Eng. 33, 3342–3348 (1994).
[CrossRef]

Proc. IEEE (1)

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

Other (10)

R. Targ, R. L. Bowles, C. L. Korb, B. M. Gentry, D. Souilhac, “Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement,” in Image Understanding for Aerospace Applications, H. N. Nasr, ed., Proc. SPIE1521, 144–157 (1991).
[CrossRef]

Zhi-shen Liu, Wei-biao Chen, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996).
[CrossRef]

C. Flesia, C. L. Korb are preparing the following paper for publication: “Theory of the double-edge molecular technique for Doppler lidar wind measurement.” C. Flesia, Université de Genève, 1211 Genève 04, Switzerland (personal communication, 1998).

G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, UK, 1988), Eq. 2.2.2b.

J. A. McKay, “The edge filter and fringe imaging for laser Doppler wind speed measurement,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 420–427 (1997).
[CrossRef]

J. A. McKay, T. D. Wilkerson, “Direct detection wind speed Doppler lidar systems,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 42–52 (1997).
[CrossRef]

W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
[CrossRef]

M. J. McGill, NASA-Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 1997).

C. S. Gardner, “Optical remote sensing techniques for measuring winds: a comparison of theoretical performance capabilities,” viewgraph presentation at Winds ’97, the Third Workshop on Wind Measurements in the Middle Atmosphere, Ann Arbor, Mich.6–9 October 1997; C. S. Gardner, University of Illinois, Urbana, Ill. 61801 (personal communication, 1997).

C. L. Korb, B. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324; C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ratio of the double-edge filter measurement uncertainty to the ideal lossless receiver limit for various ratios of source 1/e spectral width to the filter FWHM versus the laser passband offset. The operating point selected by Chanin et al.,7 and suggested by Gardner16 and Rye,17 are shown. Garnier and Chanin11 and Flesia and Korb13 derived another operating point that minimizes the effect of the aerosol signal on a Rayleigh Doppler analyzer. All selected operating points are indeed found at minima in the contours of velocity measurement uncertainty. G, Gaussian.

Fig. 2
Fig. 2

Relative uncertainty in the Doppler-shift measurement versus aperture finesse for a Gaussian source spectral width 20% of Δν fsr and for the zero-Doppler offsets selected by Gardner16 and by Flesia and Korb13 (see text). For aperture finesse below 5 or 10, the Doppler uncertainty rises rapidly.

Fig. 3
Fig. 3

Ratio of the Doppler uncertainty with the form for nonzero source spectral width to that obtained with Eq. (10) valid for negligible spectral linewidth for various offsets between the passband peak and the zero-Doppler laser frequency.

Fig. 4
Fig. 4

Doppler velocity uncertainty versus incident photons for a double-edge detector optimized for the Rayleigh backscatter signal. The method of this paper yields predicted measurement uncertainties consistent with, but approximately 20% higher, than those obtained with McGill and Spinhirne’s modeling. LOS, line of sight.

Fig. 5
Fig. 5

Doppler measurement uncertainty for a double-edge detector optimized for aerosol backscatter versus the ratio of aerosol-to-Rayleigh backscatter coefficients for N 0 = 1000 potential aerosol photocounts. The role of the Rayleigh backscatter as a noise source is large for these assumed parameters. The agreement, satisfactory in view of this large noise source, confirms the approximate validity of the models developed here. LOS, line of sight.

Tables (1)

Tables Icon

Table 1 Etalon Parameters Assumed by McGill and Spinhirne for Aerosol and Rayleigh Double-Edge Filter Doppler Uncertainty Modelinga

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

N B - N A = 2 ρ N 0 d T d ν 0 ν - ν 0 ,
δ ν - ν 0 = 1 2 ρ T ν 0 N 0 1 / 2 1 T d T d ν .
T ν = T 0 1 + 2   k = 1   R k exp - π k Δ ν e / Δ ν fsr 2 × cos 2 π k ν / Δ ν fsr ,
T 0 = 1 - A 1 - R 2 1 - R 1 + R ,
δ ν - ν 0 = Δ ν fsr 4 π 1 2 ρ T 0 N 0 1 / 2 × 1 + 2   k = 1   R k exp - π k Δ ν e / Δ ν fsr 2 cos 2 π k Δ m 0 1 / 2 k = 1   kR k exp - π k Δ ν e / Δ ν fsr 2 sin 2 π k Δ m 0 ,
Δ ν e = 2 λ 2 kT M 1 / 2 ,
T ν = T 0 1 + F ap π k = 1 R k k exp - π k Δ ν e / Δ ν fsr 2 × sin 2 π k Δ m 0 - sin 2 π k Δ m 0 - 1 F ap ,
F ap = π D fpi 2 2 λ e 0 1 A Ω ,
T ν = T 0 1 - R 2 1 + R 2 - 2 R   cos 2 π Δ m 0 .
δ ν - ν 0 = 1 + 4 γ 0 2 3 / 2 8 γ 0 1 2 ρ T pk N 0 1 / 2 Δ ν ,
T pk = 1 - R 1 + R 1 + R E 1 - R E 1 - A 1 - R 2 .
N B N 0 = T 0 T ν 0 β R β M .
δ ν - ν 0 = c λ 2 j = 1 2 SNR j 2 1 N d N d λ j 2 - 1 / 2 ,

Metrics