Abstract

The process of dye photodestruction in a solid-state dye laser is studied, and implemented is a polymeric gain medium doped with a strongly concentrated dye. The behavior of the conversion efficiency in the polymeric gain medium pumped with different laser-pulse repetition rates and the process of dye photobleaching are analyzed. The contribution of the heating of the host material into the dye molecules’ deactivation is discussed. The negative effect of high dye concentration on the dye stability under a high pump repetition rate is reported and analyzed for the first time to my knowledge. A comparison of the present results with recently published data demonstrates the major role of photodestruction, rather than direct thermodestruction, in the dye stability of the solid-state gain medium. The role of additives with low molecular weights in the polymeric matrix, for increasing the stability of the gain material, is discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye laser,” Appl. Phys. Lett. 10, 266–267 (1967).
    [CrossRef]
  2. O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
    [CrossRef]
  3. F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, J. C. McDonald, “A new tunable dye laser oscillator: preliminary report,” in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.
  4. F. J. Duarte, A. Costela, I. Garsia-Moreno, R. Sastre, J. J. Erlich, T. S. Tailor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
    [CrossRef]
  5. F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
    [CrossRef]
  6. F. J. Duarte, “Solid-state multiple-prism grating dye-laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
    [CrossRef] [PubMed]
  7. Although it is customary in the literature to use the term photodestruction, it would be more suitable to use photodegradation or photobleaching (i.e., losing excitation-radiation properties) instead. Indeed, no direct physical destruction of dye molecule bonds takes place under photoexcitation in the lasing medium, but reconfiguration of the conjugated electronic shells responsible for radiation does occur. This reconfiguration leads to an aggregation of dye molecules into higher oligomers or to chemical reactions that destroy the dye molecules. However, we follow the tradition and use the term photodestruction.
  8. R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
    [CrossRef]
  9. A. Costela, I. Garsia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
    [CrossRef]
  10. A. Costela, F. Florido, I. Garsia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60 (60), 383–389 (1995).
  11. R. Sastre, A. Costela, “Polymeric solid-state dye lasers,” Adv. Mater. 7(2), 198–202 (1995).
    [CrossRef]
  12. T. G. Pavlopoulos, J. H. Boyer, M. Shah, K. Thangaraj, M.-L. Soong, “Laser action from 2,6,8-position trisubstituted 1,3,5,7-tetramethylpyrromethene-BF2 complexes: part 1,” Appl. Opt. 29, 3885–3886 (1990).
    [CrossRef] [PubMed]
  13. F. J. Duarte, “Opportunity beckons for solid-state dye lasers,” Laser Focus World 31(5), 187–189 (1995).
  14. F. J. Duarte, “Solid-state dye laser oscillators,” in Proceedings of the International Conference on Lasers ’93, V. J. Corcoran, T. A. Goldman, eds. (STS, McLean, Va., 1994), pp. 400–404.
  15. F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye-laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
    [CrossRef]
  16. K. H. Drexhage, “Structure and properties of laser dye,” in Dye Lasers, F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1990), pp. 155–201.
  17. G. Jones, “Photochemistry of laser dyes,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 287–345.
    [CrossRef]
  18. A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, S. Popov, “Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
    [CrossRef] [PubMed]
  19. R. M. O’Connell, T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).
  20. D. W. Van Krevelen, Properties of Polymers (Elsevier, New York, 1990), pp. 525–540.
  21. M. Rodriguez, A. Costela, I. Garcia-Moreno, F. Florido, J. M. Figuera, R. Sastre, “A simple rotating system to avoid early degradation of solid-state dye lasers,” Meas. Sci. Technol. 6, 971–978 (1995).
    [CrossRef]
  22. A. Costela, I. Garsia-Moreno, J. M. Figuera, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80(6), 3167–3173 (1996).
    [CrossRef]
  23. G. Jones, J. Morais, M. L. Trudell, T. H. Chen, J. H. Boyer, “Fluorescence properties of laser dyes in polymeric media,” in Proceedings of the International Conference on Lasers ’95, V. J. Corcoran, T. A. Goldman, eds. (STS, McLean, Va., 1996), pp. 375–382.
  24. V. S. Nechitailo, “About the polymer free volume theory,” Int. J. Polym. Mater. 16, 171–177 (1992).
    [CrossRef]
  25. E. T. Knobbe, B. Dunn, P. D. Fuqua, F. Nishida, “Laser behavior and photostability characteristics of organic dye doped silicate gel materials,” Appl. Opt. 29, 2729–2733 (1990).
    [CrossRef] [PubMed]

1997 (2)

F. J. Duarte, A. Costela, I. Garsia-Moreno, R. Sastre, J. J. Erlich, T. S. Tailor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye-laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
[CrossRef]

1996 (2)

A. Costela, I. Garsia-Moreno, J. M. Figuera, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80(6), 3167–3173 (1996).
[CrossRef]

A. Costela, I. Garsia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

1995 (6)

A. Costela, F. Florido, I. Garsia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60 (60), 383–389 (1995).

R. Sastre, A. Costela, “Polymeric solid-state dye lasers,” Adv. Mater. 7(2), 198–202 (1995).
[CrossRef]

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

F. J. Duarte, “Opportunity beckons for solid-state dye lasers,” Laser Focus World 31(5), 187–189 (1995).

M. Rodriguez, A. Costela, I. Garcia-Moreno, F. Florido, J. M. Figuera, R. Sastre, “A simple rotating system to avoid early degradation of solid-state dye lasers,” Meas. Sci. Technol. 6, 971–978 (1995).
[CrossRef]

A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, S. Popov, “Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

1992 (1)

V. S. Nechitailo, “About the polymer free volume theory,” Int. J. Polym. Mater. 16, 171–177 (1992).
[CrossRef]

1990 (2)

1983 (1)

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

1968 (1)

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

1967 (1)

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye laser,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Allik, T. H.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Amat-Guerri, F.

A. Costela, I. Garsia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, F. Florido, I. Garsia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60 (60), 383–389 (1995).

Barroso, J.

A. Costela, I. Garsia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

Boyer, J. H.

T. G. Pavlopoulos, J. H. Boyer, M. Shah, K. Thangaraj, M.-L. Soong, “Laser action from 2,6,8-position trisubstituted 1,3,5,7-tetramethylpyrromethene-BF2 complexes: part 1,” Appl. Opt. 29, 3885–3886 (1990).
[CrossRef] [PubMed]

G. Jones, J. Morais, M. L. Trudell, T. H. Chen, J. H. Boyer, “Fluorescence properties of laser dyes in polymeric media,” in Proceedings of the International Conference on Lasers ’95, V. J. Corcoran, T. A. Goldman, eds. (STS, McLean, Va., 1996), pp. 375–382.

Chandra, S.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Chen, T. H.

G. Jones, J. Morais, M. L. Trudell, T. H. Chen, J. H. Boyer, “Fluorescence properties of laser dyes in polymeric media,” in Proceedings of the International Conference on Lasers ’95, V. J. Corcoran, T. A. Goldman, eds. (STS, McLean, Va., 1996), pp. 375–382.

Costela, A.

F. J. Duarte, A. Costela, I. Garsia-Moreno, R. Sastre, J. J. Erlich, T. S. Tailor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

A. Costela, I. Garsia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, I. Garsia-Moreno, J. M. Figuera, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80(6), 3167–3173 (1996).
[CrossRef]

M. Rodriguez, A. Costela, I. Garcia-Moreno, F. Florido, J. M. Figuera, R. Sastre, “A simple rotating system to avoid early degradation of solid-state dye lasers,” Meas. Sci. Technol. 6, 971–978 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garsia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60 (60), 383–389 (1995).

R. Sastre, A. Costela, “Polymeric solid-state dye lasers,” Adv. Mater. 7(2), 198–202 (1995).
[CrossRef]

Davenport, W. E.

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, J. C. McDonald, “A new tunable dye laser oscillator: preliminary report,” in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

Drexhage, K. H.

K. H. Drexhage, “Structure and properties of laser dye,” in Dye Lasers, F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1990), pp. 155–201.

Duarte, F. J.

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye-laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
[CrossRef]

F. J. Duarte, A. Costela, I. Garsia-Moreno, R. Sastre, J. J. Erlich, T. S. Tailor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

F. J. Duarte, “Opportunity beckons for solid-state dye lasers,” Laser Focus World 31(5), 187–189 (1995).

F. J. Duarte, “Solid-state multiple-prism grating dye-laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
[CrossRef] [PubMed]

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, J. C. McDonald, “A new tunable dye laser oscillator: preliminary report,” in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

F. J. Duarte, “Solid-state dye laser oscillators,” in Proceedings of the International Conference on Lasers ’93, V. J. Corcoran, T. A. Goldman, eds. (STS, McLean, Va., 1994), pp. 400–404.

Duchowicz, R.

A. Costela, F. Florido, I. Garsia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60 (60), 383–389 (1995).

Dunn, B.

Ehrlich, J. J.

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, J. C. McDonald, “A new tunable dye laser oscillator: preliminary report,” in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

Erlich, J. J.

F. J. Duarte, A. Costela, I. Garsia-Moreno, R. Sastre, J. J. Erlich, T. S. Tailor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Figuera, J. M.

A. Costela, I. Garsia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, I. Garsia-Moreno, J. M. Figuera, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80(6), 3167–3173 (1996).
[CrossRef]

M. Rodriguez, A. Costela, I. Garcia-Moreno, F. Florido, J. M. Figuera, R. Sastre, “A simple rotating system to avoid early degradation of solid-state dye lasers,” Meas. Sci. Technol. 6, 971–978 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garsia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60 (60), 383–389 (1995).

Florido, F.

A. Costela, F. Florido, I. Garsia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60 (60), 383–389 (1995).

M. Rodriguez, A. Costela, I. Garcia-Moreno, F. Florido, J. M. Figuera, R. Sastre, “A simple rotating system to avoid early degradation of solid-state dye lasers,” Meas. Sci. Technol. 6, 971–978 (1995).
[CrossRef]

Fuqua, P. D.

Garcia-Moreno, I.

M. Rodriguez, A. Costela, I. Garcia-Moreno, F. Florido, J. M. Figuera, R. Sastre, “A simple rotating system to avoid early degradation of solid-state dye lasers,” Meas. Sci. Technol. 6, 971–978 (1995).
[CrossRef]

Garsia-Moreno, I.

F. J. Duarte, A. Costela, I. Garsia-Moreno, R. Sastre, J. J. Erlich, T. S. Tailor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

A. Costela, I. Garsia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, I. Garsia-Moreno, J. M. Figuera, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80(6), 3167–3173 (1996).
[CrossRef]

A. Costela, F. Florido, I. Garsia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60 (60), 383–389 (1995).

Hermes, R. E.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Hutchinson, J. A.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Jones, G.

G. Jones, J. Morais, M. L. Trudell, T. H. Chen, J. H. Boyer, “Fluorescence properties of laser dyes in polymeric media,” in Proceedings of the International Conference on Lasers ’95, V. J. Corcoran, T. A. Goldman, eds. (STS, McLean, Va., 1996), pp. 375–382.

G. Jones, “Photochemistry of laser dyes,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 287–345.
[CrossRef]

Kaivola, M.

Knobbe, E. T.

Mallavia, R.

A. Costela, I. Garsia-Moreno, J. M. Figuera, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80(6), 3167–3173 (1996).
[CrossRef]

Maslyukov, A.

McDonald, J. C.

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, J. C. McDonald, “A new tunable dye laser oscillator: preliminary report,” in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

McFarland, B. B.

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye laser,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Morais, J.

G. Jones, J. Morais, M. L. Trudell, T. H. Chen, J. H. Boyer, “Fluorescence properties of laser dyes in polymeric media,” in Proceedings of the International Conference on Lasers ’95, V. J. Corcoran, T. A. Goldman, eds. (STS, McLean, Va., 1996), pp. 375–382.

Nechitailo, V. S.

V. S. Nechitailo, “About the polymer free volume theory,” Int. J. Polym. Mater. 16, 171–177 (1992).
[CrossRef]

Nishida, F.

Nyholm, K.

O’Connell, R. M.

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Pavlopoulos, T. G.

Peterson, O. G.

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

Popov, S.

Rodriguez, M.

M. Rodriguez, A. Costela, I. Garcia-Moreno, F. Florido, J. M. Figuera, R. Sastre, “A simple rotating system to avoid early degradation of solid-state dye lasers,” Meas. Sci. Technol. 6, 971–978 (1995).
[CrossRef]

Saito, T. T.

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Santa-Maria, M. D.

A. Costela, I. Garsia-Moreno, J. M. Figuera, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80(6), 3167–3173 (1996).
[CrossRef]

Sastre, R.

F. J. Duarte, A. Costela, I. Garsia-Moreno, R. Sastre, J. J. Erlich, T. S. Tailor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

A. Costela, I. Garsia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

A. Costela, I. Garsia-Moreno, J. M. Figuera, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80(6), 3167–3173 (1996).
[CrossRef]

M. Rodriguez, A. Costela, I. Garcia-Moreno, F. Florido, J. M. Figuera, R. Sastre, “A simple rotating system to avoid early degradation of solid-state dye lasers,” Meas. Sci. Technol. 6, 971–978 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garsia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60 (60), 383–389 (1995).

R. Sastre, A. Costela, “Polymeric solid-state dye lasers,” Adv. Mater. 7(2), 198–202 (1995).
[CrossRef]

Shah, M.

Snavely, B. B.

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

Soffer, B. H.

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye laser,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Sokolov, S.

Soong, M.-L.

Tailor, T. S.

F. J. Duarte, A. Costela, I. Garsia-Moreno, R. Sastre, J. J. Erlich, T. S. Tailor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Taylor, T. S.

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, J. C. McDonald, “A new tunable dye laser oscillator: preliminary report,” in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

Thangaraj, K.

Trudell, M. L.

G. Jones, J. Morais, M. L. Trudell, T. H. Chen, J. H. Boyer, “Fluorescence properties of laser dyes in polymeric media,” in Proceedings of the International Conference on Lasers ’95, V. J. Corcoran, T. A. Goldman, eds. (STS, McLean, Va., 1996), pp. 375–382.

Van Krevelen, D. W.

D. W. Van Krevelen, Properties of Polymers (Elsevier, New York, 1990), pp. 525–540.

Adv. Mater. (1)

R. Sastre, A. Costela, “Polymeric solid-state dye lasers,” Adv. Mater. 7(2), 198–202 (1995).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

A. Costela, F. Florido, I. Garsia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60 (60), 383–389 (1995).

Appl. Phys. Lett. (3)

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye laser,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

Int. J. Polym. Mater. (1)

V. S. Nechitailo, “About the polymer free volume theory,” Int. J. Polym. Mater. 16, 171–177 (1992).
[CrossRef]

J. Appl. Phys. (1)

A. Costela, I. Garsia-Moreno, J. M. Figuera, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80(6), 3167–3173 (1996).
[CrossRef]

Laser Focus World (1)

F. J. Duarte, “Opportunity beckons for solid-state dye lasers,” Laser Focus World 31(5), 187–189 (1995).

Meas. Sci. Technol. (1)

M. Rodriguez, A. Costela, I. Garcia-Moreno, F. Florido, J. M. Figuera, R. Sastre, “A simple rotating system to avoid early degradation of solid-state dye lasers,” Meas. Sci. Technol. 6, 971–978 (1995).
[CrossRef]

Opt. Commun. (2)

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

A. Costela, I. Garsia-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, R. Sastre, “Solid-state dye laser based on Coumarin 540A-doped polymeric matrices,” Opt. Commun. 130, 44–50 (1996).
[CrossRef]

Opt. Eng. (1)

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Opt. Laser Technol. (1)

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye-laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
[CrossRef]

Opt. Quantum Electron. (1)

F. J. Duarte, A. Costela, I. Garsia-Moreno, R. Sastre, J. J. Erlich, T. S. Tailor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Other (7)

F. J. Duarte, J. J. Ehrlich, W. E. Davenport, T. S. Taylor, J. C. McDonald, “A new tunable dye laser oscillator: preliminary report,” in Proceedings of the International Conference on Lasers ’92, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 293–296.

Although it is customary in the literature to use the term photodestruction, it would be more suitable to use photodegradation or photobleaching (i.e., losing excitation-radiation properties) instead. Indeed, no direct physical destruction of dye molecule bonds takes place under photoexcitation in the lasing medium, but reconfiguration of the conjugated electronic shells responsible for radiation does occur. This reconfiguration leads to an aggregation of dye molecules into higher oligomers or to chemical reactions that destroy the dye molecules. However, we follow the tradition and use the term photodestruction.

K. H. Drexhage, “Structure and properties of laser dye,” in Dye Lasers, F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1990), pp. 155–201.

G. Jones, “Photochemistry of laser dyes,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 287–345.
[CrossRef]

D. W. Van Krevelen, Properties of Polymers (Elsevier, New York, 1990), pp. 525–540.

F. J. Duarte, “Solid-state dye laser oscillators,” in Proceedings of the International Conference on Lasers ’93, V. J. Corcoran, T. A. Goldman, eds. (STS, McLean, Va., 1994), pp. 400–404.

G. Jones, J. Morais, M. L. Trudell, T. H. Chen, J. H. Boyer, “Fluorescence properties of laser dyes in polymeric media,” in Proceedings of the International Conference on Lasers ’95, V. J. Corcoran, T. A. Goldman, eds. (STS, McLean, Va., 1996), pp. 375–382.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for the investigation of conversion efficiency and dye photodestruction in a PMMA-based gain material.

Fig. 2
Fig. 2

Conversion efficiency as a function of the number of pulses for the pump repetition rates of (a) 4 and (b) 10 Hz.

Fig. 3
Fig. 3

Photobleached areas pumped with the 4- and 10-Hz repetition rates as they are seen (a) on the whole surface and (b) on the enlarged fragment of the gain sample. The framed image in (b) was processed with a color contrast–brightness ratio enhancement to highlight the change of the optical density of the material.

Fig. 4
Fig. 4

Modified areas (a) on the surface of the polymeric sample and (b)–(d) inside the bulk material at the depths of 200, 510, and 1010 μm, respectively. The scale in (a) applies to (b)–(d) as well.

Fig. 5
Fig. 5

Mutual arrangement of the microscope objective (and its field of view) and the molten (burned) areas inside the polymer sample.

Fig. 6
Fig. 6

Schematic coordination of the solid-state dye solution in a polymeric matrix (a) without and (b) with low-molecular-weight additives.

Metrics