Abstract

The frequency stability of a 1560-nm diode laser, whose second harmonic was locked to 87Rb sub-Doppler lines, was characterized by measuring the beat frequency relative to a 780-nm reference laser that was locked to sub-Doppler lines of another rubidium cell. The square root of the Allan variance reached a minimum value of 7.5 × 10-12 in 1 s, which corresponded to frequency variations of 1.44 kHz for the 1560-nm laser. The frequency reproducibility of the system was ≈1 × 10-9. These values are better than those that can be achieved by locking to Doppler-broadened transitions at the 1550-nm wavelength band.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fiber communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed. Proc. SPIE1837, 106–114 (1993).
    [CrossRef]
  2. Y. C. Chung, “Frequency-locked 1.3 and 1.5 μm semiconductor lasers for lightwave systems applications,” J. Lightwave. Technol. 8, 869–876 (1990).
    [CrossRef]
  3. O. Ishida, H. Toba, “Lightwave synthesizer with lock-in detected frequency references,” J. Lightwave. Technol. 9, 1344–1352 (1991).
    [CrossRef]
  4. H. Sasada, K. Yamada, “Calibration lines of HCN in the 1.5-μm region,” Appl. Opt. 29, 3535–3547 (1990).
    [CrossRef] [PubMed]
  5. T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAs distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45, 826–828 (1984).
    [CrossRef]
  6. Y. Sakai, S. Sudo, T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
    [CrossRef]
  7. S. Yoshitake, K. Akiyama, M. Iritani, H. Murayama, “1.55-μm band practical frequency stabilized semiconductor laser using C2H2 or HCN absorption lines,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 124–133 (1992).
    [CrossRef]
  8. F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Stabilization of the emission frequency of 1.54 μm DFB laser diodes to Hydrogen Iodide,” IEEE Photon. Technol. Lett. 4, 472–474 (1993).
    [CrossRef]
  9. A. J. Lucero, Y. C. Chung, S. Reilly, R. W. Tkach, “Saturation measurements of excited state transitions in noble gases using the optogalvanic effect,” Opt. Lett. 16, 849–851 (1991);U. H. P. Fischer, C. V. Helmolt, “Saturation and isotopic shift of the Kr 84 excited-state transition at 1547.825 nm,” IEEE Photon. Technol. Lett. 7, 65–67 (1995).
    [CrossRef] [PubMed]
  10. M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
    [CrossRef]
  11. M. de Labachelerie, K. Nakagawa, Y. Awaji, M. Ohtsu, “High frequency stability laser at 1.5 μm using Doppler-free molecular lines,” Opt. Lett. 20, 572–574 (1995).
    [CrossRef]
  12. V. Mahal, A. Arie, M. A. Arbore, M. M. Fejer, “Quasi-phase-matched frequency doubling in a waveguide of a 1560-nm diode laser and locking to the rubidium D2 absorption lines,” Opt. Lett. 21, 1217–1219 (1996).
    [CrossRef] [PubMed]
  13. M. Poulin, N. Cyr, C. Latrasse, M. Tetu, “Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb D2 line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
    [CrossRef]
  14. W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
    [CrossRef]
  15. A. Bruner, A. Arie, M. A. Arbore, M. M. Fejer, “Frequency stabilization of a diode laser at 1540 nm by locking to sub-Doppler lines of potassium at 770 nm,” Appl. Opt. 37, 1049–1052 (1998).
    [CrossRef]
  16. M. Zhu, R. W. Standridge, “Optical frequency standard for optical fiber communication based on the Rb 5s → 5d two-photon transition,” Opt. Lett. 22, 730–732 (1997).
    [CrossRef] [PubMed]
  17. M. Poulin, C. Latrasse, N. Cyr, M. Tetu, “An absolute frequency reference at 192.6 THz (1556 nm) based on two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631–1633 (1997).
    [CrossRef]
  18. A. Arie, M. L. Bortz, M. M. Fejer, R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757–1759 (1993).
    [CrossRef] [PubMed]
  19. M. A. Arbore, M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides,” Opt. Lett. 22, 151–153 (1997).
    [CrossRef] [PubMed]
  20. J. Ye, S. Swartz, P. Jungner, J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21, 1280–1282 (1996).
    [CrossRef] [PubMed]
  21. A. Bruner, V. Mahal, I. Kiryuschev, A. Arie, M. A. Arbore, M. M. Fejer, “Frequency stability at the kHz level of Rb-locked diode laser at 1560 nm,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CThL35, p. 378.
  22. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
    [CrossRef]
  23. J. Rutman, “Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress,” Proc. IEEE 66, 1048–1074 (1978).
    [CrossRef]
  24. R. Grimm, J. Mlynek, “The effect of resonant light pressure in saturation spectroscopy,” Appl. Phys. B 49, 179–189 (1989).
    [CrossRef]
  25. F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 154–163 (1992).
    [CrossRef]
  26. Y. Awaji, K. Nakagawa, M. de Labachelerie, M. Ohtsu, H. Sasada, “Optical frequency measurement of the H12C14N Lamb-dip-stabilized 1.5-μm diode laser,” Opt. Lett. 20, 2024–2026 (1995).
    [CrossRef] [PubMed]
  27. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]

1998 (1)

1997 (4)

M. Zhu, R. W. Standridge, “Optical frequency standard for optical fiber communication based on the Rb 5s → 5d two-photon transition,” Opt. Lett. 22, 730–732 (1997).
[CrossRef] [PubMed]

M. Poulin, C. Latrasse, N. Cyr, M. Tetu, “An absolute frequency reference at 192.6 THz (1556 nm) based on two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631–1633 (1997).
[CrossRef]

M. Poulin, N. Cyr, C. Latrasse, M. Tetu, “Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb D2 line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[CrossRef]

M. A. Arbore, M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides,” Opt. Lett. 22, 151–153 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (3)

1994 (1)

W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
[CrossRef]

1993 (2)

A. Arie, M. L. Bortz, M. M. Fejer, R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757–1759 (1993).
[CrossRef] [PubMed]

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Stabilization of the emission frequency of 1.54 μm DFB laser diodes to Hydrogen Iodide,” IEEE Photon. Technol. Lett. 4, 472–474 (1993).
[CrossRef]

1992 (1)

Y. Sakai, S. Sudo, T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
[CrossRef]

1991 (2)

1990 (2)

H. Sasada, K. Yamada, “Calibration lines of HCN in the 1.5-μm region,” Appl. Opt. 29, 3535–3547 (1990).
[CrossRef] [PubMed]

Y. C. Chung, “Frequency-locked 1.3 and 1.5 μm semiconductor lasers for lightwave systems applications,” J. Lightwave. Technol. 8, 869–876 (1990).
[CrossRef]

1989 (1)

R. Grimm, J. Mlynek, “The effect of resonant light pressure in saturation spectroscopy,” Appl. Phys. B 49, 179–189 (1989).
[CrossRef]

1984 (1)

T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAs distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45, 826–828 (1984).
[CrossRef]

1978 (1)

J. Rutman, “Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress,” Proc. IEEE 66, 1048–1074 (1978).
[CrossRef]

1968 (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Akiyama, K.

S. Yoshitake, K. Akiyama, M. Iritani, H. Murayama, “1.55-μm band practical frequency stabilized semiconductor laser using C2H2 or HCN absorption lines,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 124–133 (1992).
[CrossRef]

Akulshin, A. M.

W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Arbore, M. A.

Arie, A.

Awaji, Y.

Barwood, G. P.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fiber communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed. Proc. SPIE1837, 106–114 (1993).
[CrossRef]

Bertinetto, F.

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Stabilization of the emission frequency of 1.54 μm DFB laser diodes to Hydrogen Iodide,” IEEE Photon. Technol. Lett. 4, 472–474 (1993).
[CrossRef]

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 154–163 (1992).
[CrossRef]

Bortz, M. L.

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Breton, M.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

Bruner, A.

A. Bruner, A. Arie, M. A. Arbore, M. M. Fejer, “Frequency stabilization of a diode laser at 1540 nm by locking to sub-Doppler lines of potassium at 770 nm,” Appl. Opt. 37, 1049–1052 (1998).
[CrossRef]

A. Bruner, V. Mahal, I. Kiryuschev, A. Arie, M. A. Arbore, M. M. Fejer, “Frequency stability at the kHz level of Rb-locked diode laser at 1560 nm,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CThL35, p. 378.

Byer, R. L.

Chung, Y. C.

Cyr, N.

M. Poulin, N. Cyr, C. Latrasse, M. Tetu, “Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb D2 line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[CrossRef]

M. Poulin, C. Latrasse, N. Cyr, M. Tetu, “An absolute frequency reference at 192.6 THz (1556 nm) based on two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631–1633 (1997).
[CrossRef]

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

de Labachelerie, M.

Fejer, M. M.

Gambini, P.

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Stabilization of the emission frequency of 1.54 μm DFB laser diodes to Hydrogen Iodide,” IEEE Photon. Technol. Lett. 4, 472–474 (1993).
[CrossRef]

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 154–163 (1992).
[CrossRef]

Grimm, R.

R. Grimm, J. Mlynek, “The effect of resonant light pressure in saturation spectroscopy,” Appl. Phys. B 49, 179–189 (1989).
[CrossRef]

Hall, J. L.

Humphreys, D. A.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fiber communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed. Proc. SPIE1837, 106–114 (1993).
[CrossRef]

Ikegami, T.

Y. Sakai, S. Sudo, T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
[CrossRef]

Iritani, M.

S. Yoshitake, K. Akiyama, M. Iritani, H. Murayama, “1.55-μm band practical frequency stabilized semiconductor laser using C2H2 or HCN absorption lines,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 124–133 (1992).
[CrossRef]

Ishida, O.

O. Ishida, H. Toba, “Lightwave synthesizer with lock-in detected frequency references,” J. Lightwave. Technol. 9, 1344–1352 (1991).
[CrossRef]

Julien, C.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

Jungner, P.

Kiryuschev, I.

A. Bruner, V. Mahal, I. Kiryuschev, A. Arie, M. A. Arbore, M. M. Fejer, “Frequency stability at the kHz level of Rb-locked diode laser at 1560 nm,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CThL35, p. 378.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Knight, D. J. E.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fiber communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed. Proc. SPIE1837, 106–114 (1993).
[CrossRef]

Lano, R.

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Stabilization of the emission frequency of 1.54 μm DFB laser diodes to Hydrogen Iodide,” IEEE Photon. Technol. Lett. 4, 472–474 (1993).
[CrossRef]

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 154–163 (1992).
[CrossRef]

Latrasse, C.

M. Poulin, C. Latrasse, N. Cyr, M. Tetu, “An absolute frequency reference at 192.6 THz (1556 nm) based on two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631–1633 (1997).
[CrossRef]

M. Poulin, N. Cyr, C. Latrasse, M. Tetu, “Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb D2 line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[CrossRef]

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

Lucero, A. J.

Mahal, V.

V. Mahal, A. Arie, M. A. Arbore, M. M. Fejer, “Quasi-phase-matched frequency doubling in a waveguide of a 1560-nm diode laser and locking to the rubidium D2 absorption lines,” Opt. Lett. 21, 1217–1219 (1996).
[CrossRef] [PubMed]

A. Bruner, V. Mahal, I. Kiryuschev, A. Arie, M. A. Arbore, M. M. Fejer, “Frequency stability at the kHz level of Rb-locked diode laser at 1560 nm,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CThL35, p. 378.

Mlynek, J.

R. Grimm, J. Mlynek, “The effect of resonant light pressure in saturation spectroscopy,” Appl. Phys. B 49, 179–189 (1989).
[CrossRef]

Murayama, H.

S. Yoshitake, K. Akiyama, M. Iritani, H. Murayama, “1.55-μm band practical frequency stabilized semiconductor laser using C2H2 or HCN absorption lines,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 124–133 (1992).
[CrossRef]

Nakagawa, K.

Ohtsu, M.

Pharaoh, K. I.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fiber communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed. Proc. SPIE1837, 106–114 (1993).
[CrossRef]

Poulin, M.

M. Poulin, N. Cyr, C. Latrasse, M. Tetu, “Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb D2 line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[CrossRef]

M. Poulin, C. Latrasse, N. Cyr, M. Tetu, “An absolute frequency reference at 192.6 THz (1556 nm) based on two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631–1633 (1997).
[CrossRef]

Puleo, M.

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Stabilization of the emission frequency of 1.54 μm DFB laser diodes to Hydrogen Iodide,” IEEE Photon. Technol. Lett. 4, 472–474 (1993).
[CrossRef]

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 154–163 (1992).
[CrossRef]

Reilly, S.

Rutman, J.

J. Rutman, “Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress,” Proc. IEEE 66, 1048–1074 (1978).
[CrossRef]

Saito, S.

T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAs distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45, 826–828 (1984).
[CrossRef]

Sakai, Y.

Y. Sakai, S. Sudo, T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
[CrossRef]

Sasada, H.

Standridge, R. W.

Sudo, S.

Y. Sakai, S. Sudo, T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
[CrossRef]

Swartz, S.

Tetu, M.

M. Poulin, C. Latrasse, N. Cyr, M. Tetu, “An absolute frequency reference at 192.6 THz (1556 nm) based on two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631–1633 (1997).
[CrossRef]

M. Poulin, N. Cyr, C. Latrasse, M. Tetu, “Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb D2 line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[CrossRef]

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

Tkach, R. W.

Toba, H.

O. Ishida, H. Toba, “Lightwave synthesizer with lock-in detected frequency references,” J. Lightwave. Technol. 9, 1344–1352 (1991).
[CrossRef]

Tremblay, P.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

Wang, W.

W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
[CrossRef]

Yamada, K.

Yamamoto, Y.

T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAs distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45, 826–828 (1984).
[CrossRef]

Yanagawa, T.

T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAs distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45, 826–828 (1984).
[CrossRef]

Ye, J.

Yoshitake, S.

S. Yoshitake, K. Akiyama, M. Iritani, H. Murayama, “1.55-μm band practical frequency stabilized semiconductor laser using C2H2 or HCN absorption lines,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 124–133 (1992).
[CrossRef]

Zhu, M.

Appl. Opt. (2)

Appl. Phys. B (1)

R. Grimm, J. Mlynek, “The effect of resonant light pressure in saturation spectroscopy,” Appl. Phys. B 49, 179–189 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAs distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45, 826–828 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Sakai, S. Sudo, T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Stabilization of the emission frequency of 1.54 μm DFB laser diodes to Hydrogen Iodide,” IEEE Photon. Technol. Lett. 4, 472–474 (1993).
[CrossRef]

W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
[CrossRef]

M. Poulin, C. Latrasse, N. Cyr, M. Tetu, “An absolute frequency reference at 192.6 THz (1556 nm) based on two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631–1633 (1997).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

M. Poulin, N. Cyr, C. Latrasse, M. Tetu, “Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb D2 line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Lightwave. Technol. (2)

Y. C. Chung, “Frequency-locked 1.3 and 1.5 μm semiconductor lasers for lightwave systems applications,” J. Lightwave. Technol. 8, 869–876 (1990).
[CrossRef]

O. Ishida, H. Toba, “Lightwave synthesizer with lock-in detected frequency references,” J. Lightwave. Technol. 9, 1344–1352 (1991).
[CrossRef]

Opt. Lett. (8)

A. J. Lucero, Y. C. Chung, S. Reilly, R. W. Tkach, “Saturation measurements of excited state transitions in noble gases using the optogalvanic effect,” Opt. Lett. 16, 849–851 (1991);U. H. P. Fischer, C. V. Helmolt, “Saturation and isotopic shift of the Kr 84 excited-state transition at 1547.825 nm,” IEEE Photon. Technol. Lett. 7, 65–67 (1995).
[CrossRef] [PubMed]

A. Arie, M. L. Bortz, M. M. Fejer, R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757–1759 (1993).
[CrossRef] [PubMed]

M. de Labachelerie, K. Nakagawa, Y. Awaji, M. Ohtsu, “High frequency stability laser at 1.5 μm using Doppler-free molecular lines,” Opt. Lett. 20, 572–574 (1995).
[CrossRef]

Y. Awaji, K. Nakagawa, M. de Labachelerie, M. Ohtsu, H. Sasada, “Optical frequency measurement of the H12C14N Lamb-dip-stabilized 1.5-μm diode laser,” Opt. Lett. 20, 2024–2026 (1995).
[CrossRef] [PubMed]

M. A. Arbore, M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides,” Opt. Lett. 22, 151–153 (1997).
[CrossRef] [PubMed]

M. Zhu, R. W. Standridge, “Optical frequency standard for optical fiber communication based on the Rb 5s → 5d two-photon transition,” Opt. Lett. 22, 730–732 (1997).
[CrossRef] [PubMed]

V. Mahal, A. Arie, M. A. Arbore, M. M. Fejer, “Quasi-phase-matched frequency doubling in a waveguide of a 1560-nm diode laser and locking to the rubidium D2 absorption lines,” Opt. Lett. 21, 1217–1219 (1996).
[CrossRef] [PubMed]

J. Ye, S. Swartz, P. Jungner, J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21, 1280–1282 (1996).
[CrossRef] [PubMed]

Proc. IEEE (2)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

J. Rutman, “Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress,” Proc. IEEE 66, 1048–1074 (1978).
[CrossRef]

Other (4)

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 154–163 (1992).
[CrossRef]

S. Yoshitake, K. Akiyama, M. Iritani, H. Murayama, “1.55-μm band practical frequency stabilized semiconductor laser using C2H2 or HCN absorption lines,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 124–133 (1992).
[CrossRef]

A. Bruner, V. Mahal, I. Kiryuschev, A. Arie, M. A. Arbore, M. M. Fejer, “Frequency stability at the kHz level of Rb-locked diode laser at 1560 nm,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CThL35, p. 378.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fiber communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed. Proc. SPIE1837, 106–114 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for characterizing the frequency stability of the Rb-locked 1560-nm diode laser: AOM, acousto-optic modulator; PD, photodetector; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

Comparison between the sub-Doppler spectrum of 87Rb 5S 1/2 (F″ = 2) → 5P 3/2 (F′ = 1, 2, 3) transitions, labeled b, d, and f, respectively, obtained with the 780-nm diode laser and with the frequency-doubled 1560-nm laser. Both lasers were locked to the d/f crossover line.

Fig. 3
Fig. 3

Square root of the Allan variance between the doubled 1560-nm laser and the 780-nm reference laser. The 1560-nm was free running in one measurement and under lock in the other two measurements. The 780-nm laser was kept locked in all the measurements. In the measurement labeled center it was locked to the center of the Rb d/f transition and in the other two measurements it was locked to the side of this transition. The right axis scale refers to frequencies at 780 nm.

Fig. 4
Fig. 4

Variation of the beat frequency (at 780 nm) between the two lasers: A, the 1560 nm was under lock; B, the 1560 nm was free running; C, expanded frequency scale of A. The 780-nm laser was kept locked in all the measurements.

Metrics