Abstract

The design and testing of a proof-of-principle triangular active ring laser interferometer ∼13 m on a side is discussed. Issues such as lock in, multimode interference, mode hopping, and neon isotope mixtures are examined as they relate to large He–Ne ring lasers. Responses of the ring laser to Earth’s rotation and perturbations that change its tilt or area are presented. Some potential applications are suggested for large interferometers.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Macek, D. T. M. Davis, R. W. Olthius, J. R. Schneider, G. R. White, “Ring laser rotation rate sensor,” in Optical Lasers, J. Fox, ed. (Polytechnic, Brooklyn, 1963), pp. 199–207.
  2. W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–103 (1985) and references therein.
    [CrossRef]
  3. C. Huygens, 1665, “Letters to his father,” in Oeuvres Complétes de Christiaan Huygens, Vol. 5Société Hollandaise des Sciences, La Hoye, (Nijhoff, Dordrecht, The Netherlands, 1893), pp. 243–244. A translation of the letter is given on p. 52 of Ref. 4.
  4. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).
  5. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  6. F. Aronowitz, “The laser gyro,” in Laser Applications, M. Ross, ed. (Academic, New York, 1971), pp. 133–200 and references therein.
  7. N. Buholz, M. Chodorow, “Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron. QE-3, 454–459 (1967).
    [CrossRef]
  8. R. W. Dunn, “Multimode ring laser lock-in,” Appl. Opt. 28, 2584–2587 (1989).
    [CrossRef] [PubMed]
  9. B. Gutenberg, Physics of the Earth’s Interior, International Geophysics Series, J. Van Mieghem, ed. (Academic, New York, 1959).
  10. B. Howell, An Introduction to Seismological Research: History and Development (Cambridge U. Press, New York, 1990).
    [CrossRef]
  11. R. Hide, J. O. Dickey, “Earth’s variable rotation,” Science 253, 629–637 (1991) and references therein.
  12. M. O. Scully, M. S. Zubairy, M. P. Haugan, “Proposed optical test of metric gravitation theories,” Phys. Rev. A 24, 2009–2016 (1981).
    [CrossRef]
  13. G. A. Sanders, M. E. Prentiss, S. Ezekiel, “Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity,” Opt. Lett. 6, 569–571 (1981).
    [CrossRef] [PubMed]
  14. G. E. Stedman, “Ring laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 615–683 (1997).
    [CrossRef]
  15. D. Goldin, “2006,” Air Space Smithson. Vol. 2, No. 1 (April/May 1996), p. 90.
  16. H. R. Bilger, U. Schreiber, G. E. Stedman, “Design and application of large perimeter ring lasers,” presented at the Symposium on Gyro Technology, Stuttgart, Germany (1996).
  17. G. E. Stedman, Z. Li, H. R. Bilger, “Sideband analysis and seismic detection in a large ring laser,” Appl. Opt. 34, 5375–5385 (1995).
    [CrossRef] [PubMed]
  18. H. R. Bilger, G. E. Stedman, Z. Li, U. Schreiber, M. Schneider, “Ring lasers for geodesy,” IEEE Trans. Instrum. Meas. 44, 468–470 (1995).
    [CrossRef]

1997 (1)

G. E. Stedman, “Ring laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 615–683 (1997).
[CrossRef]

1995 (2)

G. E. Stedman, Z. Li, H. R. Bilger, “Sideband analysis and seismic detection in a large ring laser,” Appl. Opt. 34, 5375–5385 (1995).
[CrossRef] [PubMed]

H. R. Bilger, G. E. Stedman, Z. Li, U. Schreiber, M. Schneider, “Ring lasers for geodesy,” IEEE Trans. Instrum. Meas. 44, 468–470 (1995).
[CrossRef]

1991 (1)

R. Hide, J. O. Dickey, “Earth’s variable rotation,” Science 253, 629–637 (1991) and references therein.

1989 (1)

1985 (1)

W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–103 (1985) and references therein.
[CrossRef]

1981 (2)

1967 (1)

N. Buholz, M. Chodorow, “Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron. QE-3, 454–459 (1967).
[CrossRef]

Aronowitz, F.

F. Aronowitz, “The laser gyro,” in Laser Applications, M. Ross, ed. (Academic, New York, 1971), pp. 133–200 and references therein.

Bilger, H. R.

H. R. Bilger, G. E. Stedman, Z. Li, U. Schreiber, M. Schneider, “Ring lasers for geodesy,” IEEE Trans. Instrum. Meas. 44, 468–470 (1995).
[CrossRef]

G. E. Stedman, Z. Li, H. R. Bilger, “Sideband analysis and seismic detection in a large ring laser,” Appl. Opt. 34, 5375–5385 (1995).
[CrossRef] [PubMed]

H. R. Bilger, U. Schreiber, G. E. Stedman, “Design and application of large perimeter ring lasers,” presented at the Symposium on Gyro Technology, Stuttgart, Germany (1996).

Buholz, N.

N. Buholz, M. Chodorow, “Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron. QE-3, 454–459 (1967).
[CrossRef]

Chodorow, M.

N. Buholz, M. Chodorow, “Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron. QE-3, 454–459 (1967).
[CrossRef]

Chow, W. W.

W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–103 (1985) and references therein.
[CrossRef]

Davis, D. T. M.

W. M. Macek, D. T. M. Davis, R. W. Olthius, J. R. Schneider, G. R. White, “Ring laser rotation rate sensor,” in Optical Lasers, J. Fox, ed. (Polytechnic, Brooklyn, 1963), pp. 199–207.

Dickey, J. O.

R. Hide, J. O. Dickey, “Earth’s variable rotation,” Science 253, 629–637 (1991) and references therein.

Dunn, R. W.

Ezekiel, S.

Gea-Banaclocke, J.

W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–103 (1985) and references therein.
[CrossRef]

Goldin, D.

D. Goldin, “2006,” Air Space Smithson. Vol. 2, No. 1 (April/May 1996), p. 90.

Gutenberg, B.

B. Gutenberg, Physics of the Earth’s Interior, International Geophysics Series, J. Van Mieghem, ed. (Academic, New York, 1959).

Haugan, M. P.

M. O. Scully, M. S. Zubairy, M. P. Haugan, “Proposed optical test of metric gravitation theories,” Phys. Rev. A 24, 2009–2016 (1981).
[CrossRef]

Hide, R.

R. Hide, J. O. Dickey, “Earth’s variable rotation,” Science 253, 629–637 (1991) and references therein.

Howell, B.

B. Howell, An Introduction to Seismological Research: History and Development (Cambridge U. Press, New York, 1990).
[CrossRef]

Lamb, W. E.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

Li, Z.

H. R. Bilger, G. E. Stedman, Z. Li, U. Schreiber, M. Schneider, “Ring lasers for geodesy,” IEEE Trans. Instrum. Meas. 44, 468–470 (1995).
[CrossRef]

G. E. Stedman, Z. Li, H. R. Bilger, “Sideband analysis and seismic detection in a large ring laser,” Appl. Opt. 34, 5375–5385 (1995).
[CrossRef] [PubMed]

Macek, W. M.

W. M. Macek, D. T. M. Davis, R. W. Olthius, J. R. Schneider, G. R. White, “Ring laser rotation rate sensor,” in Optical Lasers, J. Fox, ed. (Polytechnic, Brooklyn, 1963), pp. 199–207.

Olthius, R. W.

W. M. Macek, D. T. M. Davis, R. W. Olthius, J. R. Schneider, G. R. White, “Ring laser rotation rate sensor,” in Optical Lasers, J. Fox, ed. (Polytechnic, Brooklyn, 1963), pp. 199–207.

Pedrotti, L. M.

W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–103 (1985) and references therein.
[CrossRef]

Prentiss, M. E.

Sanders, G. A.

Sanders, V. E.

W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–103 (1985) and references therein.
[CrossRef]

Sargent, M.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

Schleich, W.

W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–103 (1985) and references therein.
[CrossRef]

Schneider, J. R.

W. M. Macek, D. T. M. Davis, R. W. Olthius, J. R. Schneider, G. R. White, “Ring laser rotation rate sensor,” in Optical Lasers, J. Fox, ed. (Polytechnic, Brooklyn, 1963), pp. 199–207.

Schneider, M.

H. R. Bilger, G. E. Stedman, Z. Li, U. Schreiber, M. Schneider, “Ring lasers for geodesy,” IEEE Trans. Instrum. Meas. 44, 468–470 (1995).
[CrossRef]

Schreiber, U.

H. R. Bilger, G. E. Stedman, Z. Li, U. Schreiber, M. Schneider, “Ring lasers for geodesy,” IEEE Trans. Instrum. Meas. 44, 468–470 (1995).
[CrossRef]

H. R. Bilger, U. Schreiber, G. E. Stedman, “Design and application of large perimeter ring lasers,” presented at the Symposium on Gyro Technology, Stuttgart, Germany (1996).

Scully, M. O.

W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–103 (1985) and references therein.
[CrossRef]

M. O. Scully, M. S. Zubairy, M. P. Haugan, “Proposed optical test of metric gravitation theories,” Phys. Rev. A 24, 2009–2016 (1981).
[CrossRef]

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

Stedman, G. E.

G. E. Stedman, “Ring laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 615–683 (1997).
[CrossRef]

H. R. Bilger, G. E. Stedman, Z. Li, U. Schreiber, M. Schneider, “Ring lasers for geodesy,” IEEE Trans. Instrum. Meas. 44, 468–470 (1995).
[CrossRef]

G. E. Stedman, Z. Li, H. R. Bilger, “Sideband analysis and seismic detection in a large ring laser,” Appl. Opt. 34, 5375–5385 (1995).
[CrossRef] [PubMed]

H. R. Bilger, U. Schreiber, G. E. Stedman, “Design and application of large perimeter ring lasers,” presented at the Symposium on Gyro Technology, Stuttgart, Germany (1996).

White, G. R.

W. M. Macek, D. T. M. Davis, R. W. Olthius, J. R. Schneider, G. R. White, “Ring laser rotation rate sensor,” in Optical Lasers, J. Fox, ed. (Polytechnic, Brooklyn, 1963), pp. 199–207.

Zubairy, M. S.

M. O. Scully, M. S. Zubairy, M. P. Haugan, “Proposed optical test of metric gravitation theories,” Phys. Rev. A 24, 2009–2016 (1981).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

N. Buholz, M. Chodorow, “Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron. QE-3, 454–459 (1967).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

H. R. Bilger, G. E. Stedman, Z. Li, U. Schreiber, M. Schneider, “Ring lasers for geodesy,” IEEE Trans. Instrum. Meas. 44, 468–470 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

M. O. Scully, M. S. Zubairy, M. P. Haugan, “Proposed optical test of metric gravitation theories,” Phys. Rev. A 24, 2009–2016 (1981).
[CrossRef]

Rep. Prog. Phys. (1)

G. E. Stedman, “Ring laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 615–683 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–103 (1985) and references therein.
[CrossRef]

Science (1)

R. Hide, J. O. Dickey, “Earth’s variable rotation,” Science 253, 629–637 (1991) and references therein.

Other (9)

D. Goldin, “2006,” Air Space Smithson. Vol. 2, No. 1 (April/May 1996), p. 90.

H. R. Bilger, U. Schreiber, G. E. Stedman, “Design and application of large perimeter ring lasers,” presented at the Symposium on Gyro Technology, Stuttgart, Germany (1996).

C. Huygens, 1665, “Letters to his father,” in Oeuvres Complétes de Christiaan Huygens, Vol. 5Société Hollandaise des Sciences, La Hoye, (Nijhoff, Dordrecht, The Netherlands, 1893), pp. 243–244. A translation of the letter is given on p. 52 of Ref. 4.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

F. Aronowitz, “The laser gyro,” in Laser Applications, M. Ross, ed. (Academic, New York, 1971), pp. 133–200 and references therein.

W. M. Macek, D. T. M. Davis, R. W. Olthius, J. R. Schneider, G. R. White, “Ring laser rotation rate sensor,” in Optical Lasers, J. Fox, ed. (Polytechnic, Brooklyn, 1963), pp. 199–207.

B. Gutenberg, Physics of the Earth’s Interior, International Geophysics Series, J. Van Mieghem, ed. (Academic, New York, 1959).

B. Howell, An Introduction to Seismological Research: History and Development (Cambridge U. Press, New York, 1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simplified diagram of the experimental setup in which the 9.0-m radius of curvature mirrors M1, M2, and M3 form the triangular laser cavity. Spacing between the cavity mirrors is ∼13 m. An interference pattern that is produced by the silvered mirror and beam splitter sweeps across the photodetector creating a beat frequency. To allow analysis of the beat frequency, it is sampled by a precision digital frequency counter or it is recorded as a digitized sinusoidal wave.

Fig. 2
Fig. 2

Solid Earth tides are detected by two approaches as shown in this figure. The top graph shows the variation in tilt of the ring laser. A position-sensing diode measures vertical changes in the laser beam at one of the cavity mirrors. The bottom graph shows the change in the Earth’s gravitational field as recorded by a gravimeter. The two devices are in separate buildings approximately 250 m apart. Building noise is present in both graphs. The data-acquisition system, software, sample rate, and time scale are identical for both graphs.

Fig. 3
Fig. 3

Result of sampling the beat frequency at 2500 times/s. The lack of distortion in the sinusoidal wave provides visual confirmation that the ring is operating above the lock-in region. The wave has a frequency of ∼500 Hz.

Fig. 4
Fig. 4

This 3-h segment of data is obtained with a frequency counter with a 10-s gate time. The beat frequency variations result primarily from movement of the concrete floor on which the ring laser is mounted. The rigid attachment between the walls and floor can exert torques on the concrete slab in addition to the thermal stress. Changes in either the tilt or geometric area of the laser cavity produce variations in the beat frequency.

Fig. 5
Fig. 5

This 125-s segment of data is taken with a frequency counter with a 0.25-s gate time. The frequency excursions have periods that are consistent with microseisms. Fast Fourier transforms of the digitized beat note show an equivalent frequency spread in the beat note.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ν = 4 A Ω   cos   Θ / λ ρ ,

Metrics