Abstract

We present the detailed behavior of the axial force acting on a dielectric sphere exerted by the optical pressure of a focused Gaussian laser beam. Comparison is made between the numerical results and those calculated from the radiation pressure cross section. There is also a discussion as to whether the expressions for the axial force given in this paper are consistent with the previously reported experimental results. Moreover, a simple experimental method to measure the axial force on a polystyrene sphere suspended in water is demonstrated, and fairly good agreement between theoretical and experimental results was obtained.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [Crossref]
  3. A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980).
    [Crossref] [PubMed]
  4. G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
    [Crossref]
  5. G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–194 (1977).
    [Crossref]
  6. G. Roosen, “La lévitation optique de sphères,” Can. J. Phys. 57, 1260–1279 (1979).
    [Crossref]
  7. W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
    [Crossref]
  8. S. Sato, M. Ohyumi, H. Shibata, H. Inaba, Y. Ogawa, “Optical trapping of small particles using a 1.3-μm compact InGaAsP diode laser,” Opt. Lett. 16, 282–284 (1991).
    [Crossref] [PubMed]
  9. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
    [Crossref]
  10. A. Marcano O, “Laser-induced bubble trapping in liquids and its effect on light thermal blooming,” Appl. Opt. 31, 2757–2764 (1992).
  11. M. I. Angelova, B. Pouligny, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: I. Experimental,” Pure Appl. Opt. 2, 261–276 (1993).
    [Crossref]
  12. C. D’helon, E. W. Dearden, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595–601 (1994).
    [Crossref]
  13. K. Svoboda, S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
    [Crossref] [PubMed]
  14. S. Sato, Y. Harada, Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
    [Crossref] [PubMed]
  15. E. Higurashi, O. Ohguchi, H. Ukita, “Optical trapping of low-refractive-index microfabricated objects using radiation pressure exerted on their inner walls,” Opt. Lett. 20, 1931–1933 (1995).
    [Crossref] [PubMed]
  16. T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, J. C. Martin, “Automated single-cell manipulation and sorting by light trapping,” Appl. Opt. 26, 5311–5316 (1987).
    [Crossref] [PubMed]
  17. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
    [Crossref] [PubMed]
  18. H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
    [Crossref]
  19. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
    [Crossref]
  20. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
    [Crossref]
  21. T. C. Bakker Schut, E. F. Schipper, B. G. de Grooth, J. Greve, “Optical-trapping micromanipulation using 780-nm diode lasers,” Opt. Lett. 18, 447–449 (1993).
    [Crossref]
  22. H. Tashiro, M. Uchida, M. Sato-Maeda, “Three-dimensional cell manipulator by means of optical trapping for the specification of cell-to-cell adhesion,” Opt. Eng. 32, 2812–2817 (1993).
    [Crossref]
  23. W. H. Wright, G. J. Sonek, M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
    [Crossref] [PubMed]
  24. H. Felgner, O. Muller, M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt. 34, 977–982 (1995).
    [Crossref] [PubMed]
  25. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Photon. News 7(12), 11–12 (1996).
    [Crossref]
  26. E. Sidick, S. D. Collins, A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt. 36, 6423–6433 (1997).
    [Crossref]
  27. K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
    [Crossref]
  28. G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
    [Crossref]
  29. G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).
    [Crossref]
  30. G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
    [Crossref]
  31. T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
    [Crossref]
  32. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [Crossref] [PubMed]
  33. K. F. Ren, G. Gréhan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
    [Crossref] [PubMed]
  34. W. J. Smith, Modern Optical Engineering: the Design of Optical Systems (McGraw-Hill, New York, 1990), p. 179.
  35. H. M. Dobbins, E. R. Peck, “Change of refractive index of water as a function of temperature,” J. Opt. Soc. Am. 63, 318–320 (1973).
    [Crossref]
  36. B. W. Grange, W. H. Stevenson, R. Viskanta, “Refractive index of liquid solutions at low temperatures: an accurate measurement,” Appl. Opt. 15, 858–859 (1976).
    [Crossref] [PubMed]

1997 (1)

1996 (2)

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Photon. News 7(12), 11–12 (1996).
[Crossref]

K. F. Ren, G. Gréhan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[Crossref] [PubMed]

1995 (3)

1994 (5)

C. D’helon, E. W. Dearden, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595–601 (1994).
[Crossref]

K. Svoboda, S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[Crossref] [PubMed]

S. Sato, Y. Harada, Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
[Crossref] [PubMed]

W. H. Wright, G. J. Sonek, M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[Crossref] [PubMed]

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[Crossref]

1993 (4)

M. I. Angelova, B. Pouligny, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: I. Experimental,” Pure Appl. Opt. 2, 261–276 (1993).
[Crossref]

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[Crossref]

T. C. Bakker Schut, E. F. Schipper, B. G. de Grooth, J. Greve, “Optical-trapping micromanipulation using 780-nm diode lasers,” Opt. Lett. 18, 447–449 (1993).
[Crossref]

H. Tashiro, M. Uchida, M. Sato-Maeda, “Three-dimensional cell manipulator by means of optical trapping for the specification of cell-to-cell adhesion,” Opt. Eng. 32, 2812–2817 (1993).
[Crossref]

1992 (4)

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref] [PubMed]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

A. Marcano O, “Laser-induced bubble trapping in liquids and its effect on light thermal blooming,” Appl. Opt. 31, 2757–2764 (1992).

1991 (4)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
[Crossref] [PubMed]

H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
[Crossref]

S. Sato, M. Ohyumi, H. Shibata, H. Inaba, Y. Ogawa, “Optical trapping of small particles using a 1.3-μm compact InGaAsP diode laser,” Opt. Lett. 16, 282–284 (1991).
[Crossref] [PubMed]

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[Crossref]

1990 (2)

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).
[Crossref]

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[Crossref]

1988 (1)

1987 (1)

1980 (1)

A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980).
[Crossref] [PubMed]

1979 (1)

G. Roosen, “La lévitation optique de sphères,” Can. J. Phys. 57, 1260–1279 (1979).
[Crossref]

1977 (1)

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–194 (1977).
[Crossref]

1976 (2)

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[Crossref]

B. W. Grange, W. H. Stevenson, R. Viskanta, “Refractive index of liquid solutions at low temperatures: an accurate measurement,” Appl. Opt. 15, 858–859 (1976).
[Crossref] [PubMed]

1973 (1)

1971 (1)

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Angelova, M. I.

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

M. I. Angelova, B. Pouligny, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: I. Experimental,” Pure Appl. Opt. 2, 261–276 (1993).
[Crossref]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref] [PubMed]

A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Bakker Schut, T. C.

T. C. Bakker Schut, E. F. Schipper, B. G. de Grooth, J. Greve, “Optical-trapping micromanipulation using 780-nm diode lasers,” Opt. Lett. 18, 447–449 (1993).
[Crossref]

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[Crossref]

Berns, M. W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Photon. News 7(12), 11–12 (1996).
[Crossref]

W. H. Wright, G. J. Sonek, M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[Crossref] [PubMed]

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[Crossref]

Block, S. M.

Buican, T. N.

Chiou, A. E.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Photon. News 7(12), 11–12 (1996).
[Crossref]

Collins, S. D.

Crissman, H. A.

D’helon, C.

C. D’helon, E. W. Dearden, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595–601 (1994).
[Crossref]

de Grooth, B. G.

T. C. Bakker Schut, E. F. Schipper, B. G. de Grooth, J. Greve, “Optical-trapping micromanipulation using 780-nm diode lasers,” Opt. Lett. 18, 447–449 (1993).
[Crossref]

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[Crossref]

Dearden, E. W.

C. D’helon, E. W. Dearden, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595–601 (1994).
[Crossref]

Dobbins, H. M.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

Felgner, H.

Gouesbet, G.

K. F. Ren, G. Gréhan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[Crossref] [PubMed]

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[Crossref]

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).
[Crossref]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[Crossref]

Grange, B. W.

Gréhan, G.

K. F. Ren, G. Gréhan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[Crossref] [PubMed]

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[Crossref]

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).
[Crossref]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[Crossref]

Greve, J.

T. C. Bakker Schut, E. F. Schipper, B. G. de Grooth, J. Greve, “Optical-trapping micromanipulation using 780-nm diode lasers,” Opt. Lett. 18, 447–449 (1993).
[Crossref]

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[Crossref]

Harada, Y.

Heckenberg, N. R.

C. D’helon, E. W. Dearden, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595–601 (1994).
[Crossref]

Hesselink, G.

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[Crossref]

Higurashi, E.

Hong, J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Photon. News 7(12), 11–12 (1996).
[Crossref]

Imbert, C.

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[Crossref]

Inaba, H.

Kitamura, N.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[Crossref]

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
[Crossref] [PubMed]

H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
[Crossref]

Knoesen, A.

Koshioka, M.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[Crossref]

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
[Crossref] [PubMed]

Maheu, B.

Marcano O, A.

Martin, J. C.

Martinot-Lagarde, G.

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

Masuhara, H.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[Crossref]

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
[Crossref] [PubMed]

H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
[Crossref]

Misawa, H.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[Crossref]

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
[Crossref] [PubMed]

Muller, O.

Ogawa, Y.

Ohguchi, O.

Ohyumi, M.

Peck, E. R.

Pouligny, B.

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

M. I. Angelova, B. Pouligny, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: I. Experimental,” Pure Appl. Opt. 2, 261–276 (1993).
[Crossref]

Ren, K. F.

K. F. Ren, G. Gréhan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[Crossref] [PubMed]

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[Crossref]

Roosen, G.

G. Roosen, “La lévitation optique de sphères,” Can. J. Phys. 57, 1260–1279 (1979).
[Crossref]

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–194 (1977).
[Crossref]

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[Crossref]

Rubinsztein-Dunlop, H.

C. D’helon, E. W. Dearden, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595–601 (1994).
[Crossref]

Salzman, G. C.

Sasaki, K.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[Crossref]

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
[Crossref] [PubMed]

Sato, S.

Sato-Maeda, M.

H. Tashiro, M. Uchida, M. Sato-Maeda, “Three-dimensional cell manipulator by means of optical trapping for the specification of cell-to-cell adhesion,” Opt. Eng. 32, 2812–2817 (1993).
[Crossref]

Schipper, E. F.

Schliwa, M.

Shibata, H.

Sidick, E.

Smith, W. J.

W. J. Smith, Modern Optical Engineering: the Design of Optical Systems (McGraw-Hill, New York, 1990), p. 179.

Smyth, M. J.

Sonek, G. J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Photon. News 7(12), 11–12 (1996).
[Crossref]

W. H. Wright, G. J. Sonek, M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[Crossref] [PubMed]

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[Crossref]

Stevenson, W. H.

Stewart, C. C.

Svoboda, K.

Tadir, Y.

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[Crossref]

Tashiro, H.

H. Tashiro, M. Uchida, M. Sato-Maeda, “Three-dimensional cell manipulator by means of optical trapping for the specification of cell-to-cell adhesion,” Opt. Eng. 32, 2812–2817 (1993).
[Crossref]

Uchida, M.

H. Tashiro, M. Uchida, M. Sato-Maeda, “Three-dimensional cell manipulator by means of optical trapping for the specification of cell-to-cell adhesion,” Opt. Eng. 32, 2812–2817 (1993).
[Crossref]

Ukita, H.

Viskanta, R.

Wang, W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Photon. News 7(12), 11–12 (1996).
[Crossref]

Waseda, Y.

Wright, W. H.

W. H. Wright, G. J. Sonek, M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[Crossref] [PubMed]

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[Crossref]

Appl. Opt. (7)

Appl. Phys. Lett. (3)

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
[Crossref]

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[Crossref]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref] [PubMed]

Can. J. Phys. (1)

G. Roosen, “La lévitation optique de sphères,” Can. J. Phys. 57, 1260–1279 (1979).
[Crossref]

Cytometry (1)

T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[Crossref]

J. Am. Chem. Soc. (1)

H. Misawa, N. Kitamura, H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
[Crossref]

J. Mod. Opt. (1)

C. D’helon, E. W. Dearden, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595–601 (1994).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Macromolecules (1)

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
[Crossref]

Opt. Commun. (2)

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[Crossref]

G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–194 (1977).
[Crossref]

Opt. Eng. (1)

H. Tashiro, M. Uchida, M. Sato-Maeda, “Three-dimensional cell manipulator by means of optical trapping for the specification of cell-to-cell adhesion,” Opt. Eng. 32, 2812–2817 (1993).
[Crossref]

Opt. Lett. (6)

Opt. Photon. News (1)

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, “Interferometric optical tweezers,” Opt. Photon. News 7(12), 11–12 (1996).
[Crossref]

Phys. Lett. A (1)

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Pure Appl. Opt. (2)

M. I. Angelova, B. Pouligny, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: I. Experimental,” Pure Appl. Opt. 2, 261–276 (1993).
[Crossref]

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
[Crossref]

Science (1)

A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980).
[Crossref] [PubMed]

Other (1)

W. J. Smith, Modern Optical Engineering: the Design of Optical Systems (McGraw-Hill, New York, 1990), p. 179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Trajectory of a ray hitting a dielectric sphere suspended in the liquid. The beam axis passes through the center of the sphere.

Fig. 2
Fig. 2

Maximum angle θ m for performing the numerical integration of Eq. (1).

Fig. 3
Fig. 3

Variation of the axial force F z with d for n 1 = 1.33, n 2 = 1.6, λ0 = 0.488 μm, w 0 = 2 μm, and P 0 = 100 mW.

Fig. 4
Fig. 4

Variation of the axial force F z with d for n 1 = 1.33, n 2 = 1.6, λ0 = 0.633 μm, w 0 = 2 μm, and P 0 = 100 mW.

Fig. 5
Fig. 5

Variation of the axial force F z with d for n 1 = 1.33, n 2 = 1.6, λ0 = 0.488 μm, a = 6 μm, and P 0 = 100 mW.

Fig. 6
Fig. 6

Variation of the factor m with d for n 1 = 1.33, n 2 = 1.6, λ0= 0.488 μm, a = 5 μm, and P 0 = 100 mW.

Fig. 7
Fig. 7

Variation of the angle θ m with d for n 1 = 1.33, n 2 = 1.6, λ0 = 0.488 μm, a = 5 μm, and P 0 = 100 mW.

Fig. 8
Fig. 8

Comparison of the axial force calculated for θ m given by Eq. (15) (solid curve) with that calculated for θ m = π/2 (broken curve). The parameters are n 1 = 1.33, n 2 = 1.6, λ0 = 0.488 μm, a = 5 μm, w 0 = 0.5 μm, and P 0 = 100 mW.

Fig. 9
Fig. 9

Variation of the axial force F z with d for n 1 = 1.33, λ0 = 0.488 μm, a = 5 μm, w 0 = 0.5 μm, and P 0 = 100 mW.

Fig. 10
Fig. 10

Variation of the axial force F z with d for n 1 = 1.33, n 2 = 1.4, λ0 = 0.488 μm, w 0 = 0.5 μm, and P 0 = 100 mW.

Fig. 11
Fig. 11

Comparison of the axial force calculated from Eq. (1) (broken curve) and that calculated from Eq. (17) (solid curve) for n 1 = 1.33, n 2 = 1.5 × n 1 = 2, λ0 = 0.5 μm, w 0 = 5 μm, and P 0 = 100 mW.

Fig. 12
Fig. 12

Comparison of the axial force obtained from the theory (solid curve) with the experimental results (filled circles) in Ref. 31. The broken curve represents the theoretical result for θ m = π/2. The parameters are n 1 = 1.33, n 2 = 1.54, λ0 = 0.488 μm, a = 3.75 μm, w 0 = 1.8 μm, and P 0 = 100 mW.

Fig. 13
Fig. 13

Comparison of the axial force obtained from the theory (solid curve) with the experimental results (filled circles) in Ref. 31. The broken curve represents the theoretical results for θ m = π/2. The parameters are n 1 = 1.33, n 2 = 1.6, λ0 = 0.488 μm, a = 16 μm, w 0 = 1.8 μm, and P 0 = 100 mW.

Fig. 14
Fig. 14

Photograph of the cell and the microscope objective for the axial force measurement. Another microscope objective for observation of the movement of the particle is also seen at right.

Fig. 15
Fig. 15

Snapshot indicating the continuous movement of a single sphere from left to right along the beam direction. At right, a part of the display monitor is blocked by a piece of cardboard.

Fig. 16
Fig. 16

Histograms of measured axial velocity v z : (a) w 0 = 2.5 μm and (b) w 0 = 3.6 μm.

Fig. 17
Fig. 17

Axial force F z calculated for the parameters used in the experiment.

Fig. 18
Fig. 18

Histograms of measured distance Δz over which the particle moved by the axial force: (a) w 0 = 2.5 μm and (b) w 0 = 3.6 μm.

Fig. 19
Fig. 19

Examples of locus of particle movement by the axial force: (a) w 0 = 2.5 μm and (b) w 0 = 3.6 μm.

Tables (1)

Tables Icon

Table 1 Local Maxima F1, F2 of the Axial Force, and Fraction Δ ≡ (F1 - F2)/F2 (%)a

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

F z = 4 n 1 P 0 / c 0 0 τ a / w 2 exp - 2 r 2 / w 2 H θ d θ ,
H θ = cos   α 1 sin   θ cos α 1 - θ + R   cos α 1 + θ - T 2 cos α 1 + θ - 2 α 2 + R   cos α 1 + θ / 1 + R 2 + 2 R   cos   2 α 2 ,
r = a   sin   θ ,     z = d - a   cos   θ ,
α 1 = α + θ ,   α 2 = sin - 1 n 1 / n 2 sin   α 1 , α = sin - 1 r / ρ ,
w = w 0 1 + λ z / π w 0 2 2 1 / 2 , ρ = z 1 + π w 0 2 / λ z 2 ,
R = tan α 1 - α 2 / tan α 1 + α 2 2 + sin α 1 - α 2 / sin α 1 + α 2 2 / 2 ,
x 2 + z - d 2 = a 2 ,   x = mw 0 1 + λ z / π w 0 2 2 1 / 2 ,
x c = mw 0 1 + λ z c / π w 0 2 2 1 / 2 ,
z c = d ± D / 1 + m λ / π w 0 2 ,
D = d 2 - 1 + m λ / π w 0 2 m 2 w 0 2 + d 2 - a 2 .
m 2 = q 2 + 2 π a / λ 2 1 / 2 - q / 2 ,
q = π w 0 / λ 2 + d 2 - a 2 / w 0 2 .
x m = mw 0 1 + λ z m / π w 0 2 2 1 / 2 ,
z m = d / 1 + m λ / π w 0 2 .
θ m = tan - 1 x m / d - z m   for   d > 0 , θ m = π + tan - 1 x m / d - z m   for   d < 0 ,
d 0 = ± a 2 - m 2 w 0 2 1 + π w 0 / m λ 2 1 / 2 ,
F z = S ave F z + = P 0 / π w 0 2 C pr , z / c ,
S r = 2 P 0 / π w 0 2 exp - 2 r 2 / w 0 2 .
S ave = 0   S r exp - 2 r 2 / w 0 2 r d r 0 exp - 2 r 2 / w 0 2 r d r .
F z = 6 π η av z + F g - F b ,
F g = 4 π a 3 ρ s g / 3 ,   F b = 4 π a 3 ρ w g / 3 ,

Metrics