Abstract

A hot-press molding method was used to fabricate dye-doped poly(methyl methacrylate) (PMMA) slabs. Three rhodamine dyes, Rh640 (ClO4), Rh6G(ClO4), and Rh6G (Cl), were impregnated into the PMMA matrix first by dissolving the dye and granular PMMA in a solvent mixture of chloroform and methanol and then heating the mixture in vacuo at 175 °C to obtain a spongy preform. The powdered preform was molded into slabs at 175 °C and at <1 mbar, to eliminate the formation of bubbles in the slabs. We annealed the slabs for several hours to improve its optical homogeneity and hence its lasing efficiency. When pumped by a 1.5-mJ nitrogen laser, we obtained peak lasing efficiencies of 8% and 7.8%, respectively, for Rh6G (ClO4) and Rh640 (ClO4) in PMMA matrices. The lasing efficiency of Rh6G (ClO4)-doped PMMA suffered a reduction rate of 0.012%/shot compared with 0.15%/shot for Rh640 (ClO4)-doped PMMA. In contrast, Rh6G (Cl) in a hot-press molded PMMA slab suffered thermal bleaching that resulted in a low lasing efficiency of <1%; this can be explained by its absorption and fluorescence characteristics.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
    [CrossRef]
  2. O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
    [CrossRef]
  3. I. P. Kaminow, H. P. Weber, E. A. Chandross, “Polymethyl methacrylate dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
    [CrossRef]
  4. R. Reisfeld, D. Brusilovsky, M. Eyal, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160, 43–44 (1989).
    [CrossRef]
  5. M. L. Ferrer, A. U. Acuña, F. Amat-Gerri, A. Costela, J. M. Figuera, F. Florida, R. Sastre, “Proton-transfer lasers from solid polymeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole group,” Appl. Opt. 33, 2266–2272 (1994).
    [CrossRef] [PubMed]
  6. M. D. Rahn, T. A. King, “Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly(methyl methacrylate) host media,” Appl. Opt. 34, 8260–8270 (1995).
    [CrossRef] [PubMed]
  7. E. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 2, 1028–1031 (1985).
    [CrossRef]
  8. K. M. Dyumaev, A. A. Menenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
    [CrossRef]
  9. J. Muto, H. Tada, “Transport of ethanol-rhodamine 6G in the copolymer of methyl methacrylate with methacrylate acid,” J. Mater. Sci. Lett. 7, 1172–1174 (1988).
    [CrossRef]
  10. F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from the rhodamine 640-doped copolymer of 2-hyroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
    [CrossRef]
  11. A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
    [CrossRef]
  12. A. Tagaya, S. Teramoto, E. Nihei, K. Sasaki, Y. Koike, “High-power and high-gain organic dye-doped polymer optical fiber amplifiers: novel techniques for preparation and spectral investigation,” Appl. Opt. 36, 572–578 (1997).
    [CrossRef] [PubMed]
  13. I. P. Kaminow, H. P. Weber, E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
    [CrossRef]
  14. D. Shamrakov, R. Reisfeld, “Superradiant film laser operation in red perylimide dye doped silica-polymethylmethacrylate composite,” Chem. Phys. Lett. 213, 47–53 (1993).
    [CrossRef]
  15. H. K. Law, W. O. Siew, K. K. Tham, T. Y. Tou, “An ultraviolet preionised nitrogen laser switched by parallel spark gaps,” Meas. Sci. Technol. 8, 819–821 (1997).
    [CrossRef]
  16. F. Higuchi, J. Muto, “Thermal bleaching of rhodamine 6G in polymethyl methacrylate,” Phys. Lett. A 81, 95–96 (1981).
    [CrossRef]

1997

1995

M. D. Rahn, T. A. King, “Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly(methyl methacrylate) host media,” Appl. Opt. 34, 8260–8270 (1995).
[CrossRef] [PubMed]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from the rhodamine 640-doped copolymer of 2-hyroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

1994

1993

D. Shamrakov, R. Reisfeld, “Superradiant film laser operation in red perylimide dye doped silica-polymethylmethacrylate composite,” Chem. Phys. Lett. 213, 47–53 (1993).
[CrossRef]

1992

1989

R. Reisfeld, D. Brusilovsky, M. Eyal, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160, 43–44 (1989).
[CrossRef]

1988

J. Muto, H. Tada, “Transport of ethanol-rhodamine 6G in the copolymer of methyl methacrylate with methacrylate acid,” J. Mater. Sci. Lett. 7, 1172–1174 (1988).
[CrossRef]

1985

1981

F. Higuchi, J. Muto, “Thermal bleaching of rhodamine 6G in polymethyl methacrylate,” Phys. Lett. A 81, 95–96 (1981).
[CrossRef]

1971

I. P. Kaminow, H. P. Weber, E. A. Chandross, “Polymethyl methacrylate dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
[CrossRef]

I. P. Kaminow, H. P. Weber, E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
[CrossRef]

1968

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

1967

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Acuña, A. U.

Amat-Gerri, F.

Amat-Guerri, F.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from the rhodamine 640-doped copolymer of 2-hyroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Brusilovsky, D.

R. Reisfeld, D. Brusilovsky, M. Eyal, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160, 43–44 (1989).
[CrossRef]

Chandross, E. A.

I. P. Kaminow, H. P. Weber, E. A. Chandross, “Polymethyl methacrylate dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
[CrossRef]

I. P. Kaminow, H. P. Weber, E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
[CrossRef]

Costela, A.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from the rhodamine 640-doped copolymer of 2-hyroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

M. L. Ferrer, A. U. Acuña, F. Amat-Gerri, A. Costela, J. M. Figuera, F. Florida, R. Sastre, “Proton-transfer lasers from solid polymeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole group,” Appl. Opt. 33, 2266–2272 (1994).
[CrossRef] [PubMed]

Duchowicz, R.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

Dyumaev, K. M.

Eyal, M.

R. Reisfeld, D. Brusilovsky, M. Eyal, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160, 43–44 (1989).
[CrossRef]

Ferrer, M. L.

Figuera, J. M.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from the rhodamine 640-doped copolymer of 2-hyroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

M. L. Ferrer, A. U. Acuña, F. Amat-Gerri, A. Costela, J. M. Figuera, F. Florida, R. Sastre, “Proton-transfer lasers from solid polymeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole group,” Appl. Opt. 33, 2266–2272 (1994).
[CrossRef] [PubMed]

Florida, F.

Florido, F.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from the rhodamine 640-doped copolymer of 2-hyroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Garcia-Moreno, I.

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from the rhodamine 640-doped copolymer of 2-hyroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

Gromov, E. A.

Higuchi, F.

F. Higuchi, J. Muto, “Thermal bleaching of rhodamine 6G in polymethyl methacrylate,” Phys. Lett. A 81, 95–96 (1981).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, H. P. Weber, E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
[CrossRef]

I. P. Kaminow, H. P. Weber, E. A. Chandross, “Polymethyl methacrylate dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
[CrossRef]

King, T. A.

Koike, Y.

Law, H. K.

H. K. Law, W. O. Siew, K. K. Tham, T. Y. Tou, “An ultraviolet preionised nitrogen laser switched by parallel spark gaps,” Meas. Sci. Technol. 8, 819–821 (1997).
[CrossRef]

Manenkov, A. A.

Maslyukov, A. P.

Matyushin, G. A.

McFarland, B. B.

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Menenkov, A. A.

Muto, J.

J. Muto, H. Tada, “Transport of ethanol-rhodamine 6G in the copolymer of methyl methacrylate with methacrylate acid,” J. Mater. Sci. Lett. 7, 1172–1174 (1988).
[CrossRef]

F. Higuchi, J. Muto, “Thermal bleaching of rhodamine 6G in polymethyl methacrylate,” Phys. Lett. A 81, 95–96 (1981).
[CrossRef]

Nechitailo, V. S.

Nihei, E.

Peterson, O. G.

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

Prokhorov, A. M.

Rahn, M. D.

Reisfeld, R.

D. Shamrakov, R. Reisfeld, “Superradiant film laser operation in red perylimide dye doped silica-polymethylmethacrylate composite,” Chem. Phys. Lett. 213, 47–53 (1993).
[CrossRef]

R. Reisfeld, D. Brusilovsky, M. Eyal, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160, 43–44 (1989).
[CrossRef]

Sasaki, K.

Sastre, R.

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from the rhodamine 640-doped copolymer of 2-hyroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

M. L. Ferrer, A. U. Acuña, F. Amat-Gerri, A. Costela, J. M. Figuera, F. Florida, R. Sastre, “Proton-transfer lasers from solid polymeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole group,” Appl. Opt. 33, 2266–2272 (1994).
[CrossRef] [PubMed]

Shamrakov, D.

D. Shamrakov, R. Reisfeld, “Superradiant film laser operation in red perylimide dye doped silica-polymethylmethacrylate composite,” Chem. Phys. Lett. 213, 47–53 (1993).
[CrossRef]

Siew, W. O.

H. K. Law, W. O. Siew, K. K. Tham, T. Y. Tou, “An ultraviolet preionised nitrogen laser switched by parallel spark gaps,” Meas. Sci. Technol. 8, 819–821 (1997).
[CrossRef]

Snavely, B. B.

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

Soffer, B. H.

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Tada, H.

J. Muto, H. Tada, “Transport of ethanol-rhodamine 6G in the copolymer of methyl methacrylate with methacrylate acid,” J. Mater. Sci. Lett. 7, 1172–1174 (1988).
[CrossRef]

Tagaya, A.

Teramoto, S.

Tham, K. K.

H. K. Law, W. O. Siew, K. K. Tham, T. Y. Tou, “An ultraviolet preionised nitrogen laser switched by parallel spark gaps,” Meas. Sci. Technol. 8, 819–821 (1997).
[CrossRef]

Tou, T. Y.

H. K. Law, W. O. Siew, K. K. Tham, T. Y. Tou, “An ultraviolet preionised nitrogen laser switched by parallel spark gaps,” Meas. Sci. Technol. 8, 819–821 (1997).
[CrossRef]

Weber, H. P.

I. P. Kaminow, H. P. Weber, E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
[CrossRef]

I. P. Kaminow, H. P. Weber, E. A. Chandross, “Polymethyl methacrylate dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

Appl. Phys. Lett.

I. P. Kaminow, H. P. Weber, E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
[CrossRef]

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

I. P. Kaminow, H. P. Weber, E. A. Chandross, “Polymethyl methacrylate dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18, 497–499 (1971).
[CrossRef]

Chem. Phys. Lett.

R. Reisfeld, D. Brusilovsky, M. Eyal, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160, 43–44 (1989).
[CrossRef]

D. Shamrakov, R. Reisfeld, “Superradiant film laser operation in red perylimide dye doped silica-polymethylmethacrylate composite,” Chem. Phys. Lett. 213, 47–53 (1993).
[CrossRef]

J. Mater. Sci. Lett.

J. Muto, H. Tada, “Transport of ethanol-rhodamine 6G in the copolymer of methyl methacrylate with methacrylate acid,” J. Mater. Sci. Lett. 7, 1172–1174 (1988).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

H. K. Law, W. O. Siew, K. K. Tham, T. Y. Tou, “An ultraviolet preionised nitrogen laser switched by parallel spark gaps,” Meas. Sci. Technol. 8, 819–821 (1997).
[CrossRef]

Opt. Commun.

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from the rhodamine 640-doped copolymer of 2-hyroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Phys. Lett. A

F. Higuchi, J. Muto, “Thermal bleaching of rhodamine 6G in polymethyl methacrylate,” Phys. Lett. A 81, 95–96 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mold design for fabrication of a dye-doped PMMA slab.

Fig. 2
Fig. 2

Lasing efficiency (%) for Rh640 (ClO4)-doped PMMA versus initial dye concentration.

Fig. 3
Fig. 3

Lasing efficiency (%) for Rh6G (ClO4)-doped PMMA versus initial dye concentration.

Fig. 4
Fig. 4

Lasing efficiencies (%) for Rh6G and Rh640 (ClO4)-doped PMMA versus number of pump pulses. Concentration, [Rh6G] = [Rh640] = 5 × 10-3 M; pump energy, 1.5 mJ; pump rate, 0.3 Hz.

Fig. 5
Fig. 5

Comparison of laser emission spectra from a dye solution (without PMMA) and doped PMMA slab of (a) Rh640 (ClO4) and (b) Rh6G (ClO4).

Fig. 6
Fig. 6

Comparison of (a) absorption coefficients and (b) fluorescence intensities for Rh6G (Cl) in a PMMA preform and a slab that were redissolved in chloroform.

Tables (1)

Tables Icon

Table 1 Comparison of Rh6G Perchlorate, Rh640 Perchlorate, and Rh6G Chloride in PMMA and PHEMA Matrices

Metrics