Abstract

A two-dimensional digital micromirror device- (DMD-) based add–drop filter is introduced for dense wavelength-division multiplexed applications. Features of the filter include polarization-insensitive operation, low interchannel cross talk parallel processing, and a fault-tolerant design. Experiments include evaluation of a parallel-beam-fed interchannel cross-talk with a 25-beam mask and a three-color (red, green, blue) filter operational test that indicates output-port average switching optical signal-to-noise and multiwavelength cross-talk ratios of 24 dB. The DMD-based average optical loss for the filter is -2.85 dB for visible-light free-space operation, whereas a -8.88-dB optical loss is measured for a fiber-coupled filter operating at 1319 nm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Nykolak, M. R. X. de Barros, T. N. Nielsen, L. Eskildsen, “All-fiber active add-drop wavelength router,” IEEE Photon. Technol. Lett. 9, 605–606 (1997).
    [CrossRef]
  2. Y. Shibata, S. Oku, Y. Kondo, T. Tamamura, “Semiconductor monolithic wavelength selective router using grating switch integrated with directional coupler,” Electron. Lett. 31, 966–967 (1995).
    [CrossRef]
  3. K. Okamoto, K. Takiguchi, Y. Ohmori, “16-channel optical add–drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32, 1471–1472 (1996).
    [CrossRef]
  4. J. L. Arce-Diego, R. Lopez-Ruisanchez, J. M. Lopez-Higuera, M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22, 603–605 (1997).
    [CrossRef] [PubMed]
  5. H. Okayama, T. Kamijoh, “Multi-port wavelength routers using multi-mode interference,” Opt. Eng. 36, 1078–1081 (1997).
    [CrossRef]
  6. O. Ishida, H. Takahashi, S. Suzuki, Y. Inoue, “Multichannel frequency selective switch employing an array-waveguide grating multiplexer with fold-back optical paths,” IEEE Photon. Technol. Lett. 6, 1219–1221 (1994).
    [CrossRef]
  7. H.-P. Nolting, M. Gravert, “Electro-optically controlled multiwavelength switch for WDM cross connector application,” IEEE Photon. Technol. Lett. 7, 315–318 (1995).
    [CrossRef]
  8. K. Okamoto, NTT Opto-electronics Laboratories, 162 Tokai, Naka-gun, Ibaraki Prefecture 319-11, Japan (personal communications, 1997).
  9. J. S. Patel, Y. Silberberg, “Liquid crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7, 514–516 (1995).
    [CrossRef]
  10. N. A. Riza, “Low interchannel crosstalk wavelength routing switch based on bulk acousto-optic tunable filters,” in IEEE LEOS Annual Meeting (IEEE, Piscataway, N.J., 1997), paper ThH2, pp. 341–342.
  11. N. A. Riza, “Coherent techniques and digital micromirror device based switched photonic time delay control for high-frequency antenna arrays,” in Optical Technology for Microwave Application VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 97–103 (1997).
    [CrossRef]
  12. J. E. Ford, J. A. Walker, V. Aksyuk, D. J. Bishop, “Wavelength selectable add/drop with tilting micromirrors,” in IEEE LEOS Annual Meeting (IEEE, Piscataway, N.J., 1997), postdeadline paper PD2.3.
  13. L. J. Hornbeck, “Deformable-mirror spatial light modulators,” in Spatial Light Modulators and Applications III, U. Efron, ed., Proc. SPIE1150, 86–102 (1990).
    [CrossRef]
  14. R. L. Knipe, “Challenges of a digital micromirror device™: modeling and design,” in European Symposium on Lasers, Optics, and Vision for Productivity in Manufacturing I, O. M. Parriaux, ed., Proc. SPIE2783, 135–145 (1996).
  15. Texas Instruments Digital Video Product Group, “The state of the art in projection display: an introduction to the digital light processing (DLPTM) technology,” (Texas Instruments, Dallas, Tex., 1996), pp. 1–15.
  16. J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
    [CrossRef]
  17. N. A. Riza, S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
    [CrossRef]
  18. L. J. Hornbeck, Texas Instruments, MS 992, P. O. Box 655012, Dallas, Tex. 75265 (personal communication, 1997).

1998 (1)

N. A. Riza, S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

1997 (3)

G. Nykolak, M. R. X. de Barros, T. N. Nielsen, L. Eskildsen, “All-fiber active add-drop wavelength router,” IEEE Photon. Technol. Lett. 9, 605–606 (1997).
[CrossRef]

J. L. Arce-Diego, R. Lopez-Ruisanchez, J. M. Lopez-Higuera, M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22, 603–605 (1997).
[CrossRef] [PubMed]

H. Okayama, T. Kamijoh, “Multi-port wavelength routers using multi-mode interference,” Opt. Eng. 36, 1078–1081 (1997).
[CrossRef]

1996 (1)

K. Okamoto, K. Takiguchi, Y. Ohmori, “16-channel optical add–drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32, 1471–1472 (1996).
[CrossRef]

1995 (3)

H.-P. Nolting, M. Gravert, “Electro-optically controlled multiwavelength switch for WDM cross connector application,” IEEE Photon. Technol. Lett. 7, 315–318 (1995).
[CrossRef]

J. S. Patel, Y. Silberberg, “Liquid crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7, 514–516 (1995).
[CrossRef]

Y. Shibata, S. Oku, Y. Kondo, T. Tamamura, “Semiconductor monolithic wavelength selective router using grating switch integrated with directional coupler,” Electron. Lett. 31, 966–967 (1995).
[CrossRef]

1994 (1)

O. Ishida, H. Takahashi, S. Suzuki, Y. Inoue, “Multichannel frequency selective switch employing an array-waveguide grating multiplexer with fold-back optical paths,” IEEE Photon. Technol. Lett. 6, 1219–1221 (1994).
[CrossRef]

Aksyuk, V.

J. E. Ford, J. A. Walker, V. Aksyuk, D. J. Bishop, “Wavelength selectable add/drop with tilting micromirrors,” in IEEE LEOS Annual Meeting (IEEE, Piscataway, N.J., 1997), postdeadline paper PD2.3.

Arce-Diego, J. L.

J. L. Arce-Diego, R. Lopez-Ruisanchez, J. M. Lopez-Higuera, M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22, 603–605 (1997).
[CrossRef] [PubMed]

Bishop, D. J.

J. E. Ford, J. A. Walker, V. Aksyuk, D. J. Bishop, “Wavelength selectable add/drop with tilting micromirrors,” in IEEE LEOS Annual Meeting (IEEE, Piscataway, N.J., 1997), postdeadline paper PD2.3.

de Barros, M. R. X.

G. Nykolak, M. R. X. de Barros, T. N. Nielsen, L. Eskildsen, “All-fiber active add-drop wavelength router,” IEEE Photon. Technol. Lett. 9, 605–606 (1997).
[CrossRef]

Eskildsen, L.

G. Nykolak, M. R. X. de Barros, T. N. Nielsen, L. Eskildsen, “All-fiber active add-drop wavelength router,” IEEE Photon. Technol. Lett. 9, 605–606 (1997).
[CrossRef]

Ford, J. E.

J. E. Ford, J. A. Walker, V. Aksyuk, D. J. Bishop, “Wavelength selectable add/drop with tilting micromirrors,” in IEEE LEOS Annual Meeting (IEEE, Piscataway, N.J., 1997), postdeadline paper PD2.3.

Gravert, M.

H.-P. Nolting, M. Gravert, “Electro-optically controlled multiwavelength switch for WDM cross connector application,” IEEE Photon. Technol. Lett. 7, 315–318 (1995).
[CrossRef]

Hornbeck, L. J.

L. J. Hornbeck, “Deformable-mirror spatial light modulators,” in Spatial Light Modulators and Applications III, U. Efron, ed., Proc. SPIE1150, 86–102 (1990).
[CrossRef]

L. J. Hornbeck, Texas Instruments, MS 992, P. O. Box 655012, Dallas, Tex. 75265 (personal communication, 1997).

Inoue, Y.

O. Ishida, H. Takahashi, S. Suzuki, Y. Inoue, “Multichannel frequency selective switch employing an array-waveguide grating multiplexer with fold-back optical paths,” IEEE Photon. Technol. Lett. 6, 1219–1221 (1994).
[CrossRef]

Ishida, O.

O. Ishida, H. Takahashi, S. Suzuki, Y. Inoue, “Multichannel frequency selective switch employing an array-waveguide grating multiplexer with fold-back optical paths,” IEEE Photon. Technol. Lett. 6, 1219–1221 (1994).
[CrossRef]

Kamijoh, T.

H. Okayama, T. Kamijoh, “Multi-port wavelength routers using multi-mode interference,” Opt. Eng. 36, 1078–1081 (1997).
[CrossRef]

Kim, J.

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

Knipe, R. L.

R. L. Knipe, “Challenges of a digital micromirror device™: modeling and design,” in European Symposium on Lasers, Optics, and Vision for Productivity in Manufacturing I, O. M. Parriaux, ed., Proc. SPIE2783, 135–145 (1996).

Kondo, Y.

Y. Shibata, S. Oku, Y. Kondo, T. Tamamura, “Semiconductor monolithic wavelength selective router using grating switch integrated with directional coupler,” Electron. Lett. 31, 966–967 (1995).
[CrossRef]

Lopez-Higuera, J. M.

J. L. Arce-Diego, R. Lopez-Ruisanchez, J. M. Lopez-Higuera, M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22, 603–605 (1997).
[CrossRef] [PubMed]

Lopez-Ruisanchez, R.

J. L. Arce-Diego, R. Lopez-Ruisanchez, J. M. Lopez-Higuera, M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22, 603–605 (1997).
[CrossRef] [PubMed]

Muriel, M. A.

J. L. Arce-Diego, R. Lopez-Ruisanchez, J. M. Lopez-Higuera, M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22, 603–605 (1997).
[CrossRef] [PubMed]

Nielsen, T. N.

G. Nykolak, M. R. X. de Barros, T. N. Nielsen, L. Eskildsen, “All-fiber active add-drop wavelength router,” IEEE Photon. Technol. Lett. 9, 605–606 (1997).
[CrossRef]

Nolting, H.-P.

H.-P. Nolting, M. Gravert, “Electro-optically controlled multiwavelength switch for WDM cross connector application,” IEEE Photon. Technol. Lett. 7, 315–318 (1995).
[CrossRef]

Nykolak, G.

G. Nykolak, M. R. X. de Barros, T. N. Nielsen, L. Eskildsen, “All-fiber active add-drop wavelength router,” IEEE Photon. Technol. Lett. 9, 605–606 (1997).
[CrossRef]

Ohmori, Y.

K. Okamoto, K. Takiguchi, Y. Ohmori, “16-channel optical add–drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32, 1471–1472 (1996).
[CrossRef]

Okamoto, K.

K. Okamoto, K. Takiguchi, Y. Ohmori, “16-channel optical add–drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32, 1471–1472 (1996).
[CrossRef]

K. Okamoto, NTT Opto-electronics Laboratories, 162 Tokai, Naka-gun, Ibaraki Prefecture 319-11, Japan (personal communications, 1997).

Okayama, H.

H. Okayama, T. Kamijoh, “Multi-port wavelength routers using multi-mode interference,” Opt. Eng. 36, 1078–1081 (1997).
[CrossRef]

Oku, S.

Y. Shibata, S. Oku, Y. Kondo, T. Tamamura, “Semiconductor monolithic wavelength selective router using grating switch integrated with directional coupler,” Electron. Lett. 31, 966–967 (1995).
[CrossRef]

Patel, J. S.

J. S. Patel, Y. Silberberg, “Liquid crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7, 514–516 (1995).
[CrossRef]

Riza, N. A.

N. A. Riza, S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

N. A. Riza, “Low interchannel crosstalk wavelength routing switch based on bulk acousto-optic tunable filters,” in IEEE LEOS Annual Meeting (IEEE, Piscataway, N.J., 1997), paper ThH2, pp. 341–342.

N. A. Riza, “Coherent techniques and digital micromirror device based switched photonic time delay control for high-frequency antenna arrays,” in Optical Technology for Microwave Application VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 97–103 (1997).
[CrossRef]

Shibata, Y.

Y. Shibata, S. Oku, Y. Kondo, T. Tamamura, “Semiconductor monolithic wavelength selective router using grating switch integrated with directional coupler,” Electron. Lett. 31, 966–967 (1995).
[CrossRef]

Silberberg, Y.

J. S. Patel, Y. Silberberg, “Liquid crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7, 514–516 (1995).
[CrossRef]

Suzuki, S.

O. Ishida, H. Takahashi, S. Suzuki, Y. Inoue, “Multichannel frequency selective switch employing an array-waveguide grating multiplexer with fold-back optical paths,” IEEE Photon. Technol. Lett. 6, 1219–1221 (1994).
[CrossRef]

Takahashi, H.

O. Ishida, H. Takahashi, S. Suzuki, Y. Inoue, “Multichannel frequency selective switch employing an array-waveguide grating multiplexer with fold-back optical paths,” IEEE Photon. Technol. Lett. 6, 1219–1221 (1994).
[CrossRef]

Takiguchi, K.

K. Okamoto, K. Takiguchi, Y. Ohmori, “16-channel optical add–drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32, 1471–1472 (1996).
[CrossRef]

Tamamura, T.

Y. Shibata, S. Oku, Y. Kondo, T. Tamamura, “Semiconductor monolithic wavelength selective router using grating switch integrated with directional coupler,” Electron. Lett. 31, 966–967 (1995).
[CrossRef]

Walker, J. A.

J. E. Ford, J. A. Walker, V. Aksyuk, D. J. Bishop, “Wavelength selectable add/drop with tilting micromirrors,” in IEEE LEOS Annual Meeting (IEEE, Piscataway, N.J., 1997), postdeadline paper PD2.3.

Yuan, S.

N. A. Riza, S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

Electron. Lett. (2)

Y. Shibata, S. Oku, Y. Kondo, T. Tamamura, “Semiconductor monolithic wavelength selective router using grating switch integrated with directional coupler,” Electron. Lett. 31, 966–967 (1995).
[CrossRef]

K. Okamoto, K. Takiguchi, Y. Ohmori, “16-channel optical add–drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches,” Electron. Lett. 32, 1471–1472 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. Nykolak, M. R. X. de Barros, T. N. Nielsen, L. Eskildsen, “All-fiber active add-drop wavelength router,” IEEE Photon. Technol. Lett. 9, 605–606 (1997).
[CrossRef]

H.-P. Nolting, M. Gravert, “Electro-optically controlled multiwavelength switch for WDM cross connector application,” IEEE Photon. Technol. Lett. 7, 315–318 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

O. Ishida, H. Takahashi, S. Suzuki, Y. Inoue, “Multichannel frequency selective switch employing an array-waveguide grating multiplexer with fold-back optical paths,” IEEE Photon. Technol. Lett. 6, 1219–1221 (1994).
[CrossRef]

J. S. Patel, Y. Silberberg, “Liquid crystal and grating-based multiple-wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7, 514–516 (1995).
[CrossRef]

Opt. Lett. (1)

J. L. Arce-Diego, R. Lopez-Ruisanchez, J. M. Lopez-Higuera, M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22, 603–605 (1997).
[CrossRef] [PubMed]

Opt. Eng. (2)

H. Okayama, T. Kamijoh, “Multi-port wavelength routers using multi-mode interference,” Opt. Eng. 36, 1078–1081 (1997).
[CrossRef]

N. A. Riza, S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

Other (9)

L. J. Hornbeck, Texas Instruments, MS 992, P. O. Box 655012, Dallas, Tex. 75265 (personal communication, 1997).

K. Okamoto, NTT Opto-electronics Laboratories, 162 Tokai, Naka-gun, Ibaraki Prefecture 319-11, Japan (personal communications, 1997).

N. A. Riza, “Low interchannel crosstalk wavelength routing switch based on bulk acousto-optic tunable filters,” in IEEE LEOS Annual Meeting (IEEE, Piscataway, N.J., 1997), paper ThH2, pp. 341–342.

N. A. Riza, “Coherent techniques and digital micromirror device based switched photonic time delay control for high-frequency antenna arrays,” in Optical Technology for Microwave Application VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 97–103 (1997).
[CrossRef]

J. E. Ford, J. A. Walker, V. Aksyuk, D. J. Bishop, “Wavelength selectable add/drop with tilting micromirrors,” in IEEE LEOS Annual Meeting (IEEE, Piscataway, N.J., 1997), postdeadline paper PD2.3.

L. J. Hornbeck, “Deformable-mirror spatial light modulators,” in Spatial Light Modulators and Applications III, U. Efron, ed., Proc. SPIE1150, 86–102 (1990).
[CrossRef]

R. L. Knipe, “Challenges of a digital micromirror device™: modeling and design,” in European Symposium on Lasers, Optics, and Vision for Productivity in Manufacturing I, O. M. Parriaux, ed., Proc. SPIE2783, 135–145 (1996).

Texas Instruments Digital Video Product Group, “The state of the art in projection display: an introduction to the digital light processing (DLPTM) technology,” (Texas Instruments, Dallas, Tex., 1996), pp. 1–15.

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) 2-D DMD pixel layout for the 640 × 480 electrically active pixels, (b) photograph of the device.

Fig. 2
Fig. 2

+10° and -10° states of the Texas Instruments (TI) DMD as specified by the manufacturer. Hence, as indicated, the DMD acts as a binary device with only two electronically operational modes. A third state is also possible, with the device electrically off, resulting in flat (no tilt) mirrors.

Fig. 3
Fig. 3

Our proposed fault-tolerant dense multiwavelength add–drop filter using a high-SBWP 2-D DMD. We propose the use of fiber–lens coupled AWG multiplexers as the free-space interface to the 2-D DMD switching system.

Fig. 4
Fig. 4

Our multibeam test for measuring 2-D interchannel cross-talk by using a 5 × 5 beam mask placed at the filter input plane to generate 25 beams that illuminate the 2-D DMD. (a) Input at the 2-D DMD plane, (b) output at filter port 1, (c) the output at filter port 2. As shown, the use of imaging optics between the input–output ports and the DMD maintains a very low cross-talk level, measured to be <-60 dB.

Fig. 5
Fig. 5

Proof-of-concept experimental setup for our filter for three visible wavelengths (R, red; G, green; B, blue). S1’s and S2’s, spherical lenses; F1, F2, focal lengths of S1 and S2, respectively.

Fig. 6
Fig. 6

Quality of images and FWHM values for the optical beams at the output plane of the filter input GRIN lens and the input plane of the GRIN lens at one of the output add–drop ports.

Fig. 7
Fig. 7

Optically activated zone containing ∼435 micromirrors in the DMD when a GRIN-fiber feed at 1319 nm is used.

Tables (3)

Tables Icon

Table 1 Measured Optical Loss Values for Both Ports of the Filtera

Tables Icon

Table 2 Measured SNR’s for Both Ports of the Filtera

Tables Icon

Table 3 Measured Interwavelength Optical Cross-Talk Ratios for Both Ports of the Filtera

Metrics