Abstract

Reported is an investigation into the effect of spherical aberration caused by the mismatch of the refractive indices between the recording material and its immersion medium on the three-dimensional optical data-storage density in a two-photon bleaching polymer. It is found both theoretically and experimentally that spherical aberration can be compensated for by a change in the tube length at which a microscope objective is operated in recording and reading processes. After compensation for the spherical aberration it is possible to achieve a three-dimensional recording density of 3.5 Tbits/cm3 for a commercial objective with a numerical aperture of 1.4.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  2. T. Tanaka, S. Kawata, “Randomly accessible, multilayered optical memory with Bi12SiO20 crystal,” Appl. Opt. 35, 5308–5311 (1996).
    [CrossRef] [PubMed]
  3. Y. Kawata, H. Ueki, Y. Hashimoto, S. Kawata, “Three-dimensional optical memory with a photorefractive crystal,” Appl. Opt. 34, 4105–4110 (1995).
    [CrossRef] [PubMed]
  4. H. Ueki, Y. Kawata, S. Kawata, “Three-dimensional optical bit-memory recording and reading with photorefractive crystal: analysis and experiment,” Appl. Opt. 35, 2457–2465 (1996).
    [CrossRef] [PubMed]
  5. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  6. P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).
  7. T. Wilson, C. R. Sheppard, Theory and Practice of Optical Scanning Microscopy (Academic, London, 1984).
  8. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
  9. W. Denk, J. H. Stricker, W. W. Webb, “Two-photon fluorescence scanning microscopy,” Science 248, 73–75 (1990).
    [CrossRef] [PubMed]
  10. P. Torok, P. Verga, Z. Laczik, G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integration representation,” J. Opt. Soc. Am. A 12, 325–332 (1996).
    [CrossRef]
  11. C. J. R. Sheppard, M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
    [CrossRef] [PubMed]
  12. C. J. R. Sheppard, M. Gu, “Imaging by a high aperture optical system,” J. Mod. Opt. 40, 1631–1651 (1993).
    [CrossRef]
  13. C. J. R. Sheppard, M. Gu, K. Brain, H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616–624 (1994).
    [CrossRef] [PubMed]
  14. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

1996

1995

1994

1993

C. J. R. Sheppard, M. Gu, “Imaging by a high aperture optical system,” J. Mod. Opt. 40, 1631–1651 (1993).
[CrossRef]

1991

1990

W. Denk, J. H. Stricker, W. W. Webb, “Two-photon fluorescence scanning microscopy,” Science 248, 73–75 (1990).
[CrossRef] [PubMed]

1989

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Bhawalkar, J. D.

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Booker, G. R.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

Brain, K.

Cheng, P. C.

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Denk, W.

W. Denk, J. H. Stricker, W. W. Webb, “Two-photon fluorescence scanning microscopy,” Science 248, 73–75 (1990).
[CrossRef] [PubMed]

Gu, M.

C. J. R. Sheppard, M. Gu, K. Brain, H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616–624 (1994).
[CrossRef] [PubMed]

C. J. R. Sheppard, M. Gu, “Imaging by a high aperture optical system,” J. Mod. Opt. 40, 1631–1651 (1993).
[CrossRef]

C. J. R. Sheppard, M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
[CrossRef] [PubMed]

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

Hashimoto, Y.

He, G. S.

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Kawata, S.

Kawata, Y.

Kumar, N. D.

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Laczik, Z.

Liou, W. S.

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Pan, S. J.

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Prasad, P. N.

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Ruland, G. E.

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Samarabandu, J. K.

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Sheppard, C. J. R.

Sheppard, C. R.

T. Wilson, C. R. Sheppard, Theory and Practice of Optical Scanning Microscopy (Academic, London, 1984).

Stricker, J. H.

W. Denk, J. H. Stricker, W. W. Webb, “Two-photon fluorescence scanning microscopy,” Science 248, 73–75 (1990).
[CrossRef] [PubMed]

Strickler, J. H.

Tanaka, T.

Torok, P.

Ueki, H.

Verga, P.

Webb, W. W.

Wiatakiewicz, J.

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Wilson, T.

T. Wilson, C. R. Sheppard, Theory and Practice of Optical Scanning Microscopy (Academic, London, 1984).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

Zhou, H.

Appl. Opt.

J. Mod. Opt.

C. J. R. Sheppard, M. Gu, “Imaging by a high aperture optical system,” J. Mod. Opt. 40, 1631–1651 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Scanning

P. C. Cheng, J. D. Bhawalkar, S. J. Pan, J. Wiatakiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, G. E. Ruland, N. D. Kumar, P. N. Prasad, “Two-photon generated three-dimensional photon bleached patterns in polymer matrix,” Scanning 18, 129–131 (1996).

Science

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

W. Denk, J. H. Stricker, W. W. Webb, “Two-photon fluorescence scanning microscopy,” Science 248, 73–75 (1990).
[CrossRef] [PubMed]

Other

T. Wilson, C. R. Sheppard, Theory and Practice of Optical Scanning Microscopy (Academic, London, 1984).

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Transverse and (b) axial cross sections of the 3-D IPSF at different depths in the 2-p bleaching polymer. The objective is assumed to be a dry objective with a numerical aperture of 0.75.

Fig. 2
Fig. 2

Transverse and axial FWHM’s of the 3-D IPSF’s Δr and Δz, respectively, as functions of the depth d of the 2-p bleaching polymer under the unbalanced (solid curves) and balanced (dashed curves) conditions. The objective is assumed to be the same as for Fig. 1.

Fig. 3
Fig. 3

Maximum intensity at the focus I max and the focus shift z f as functions of the depth of the 2-p bleaching polymer under unbalanced (solid curve) and balanced (dashed curve) conditions. The objective is assumed to be the same as for Fig. 1.

Fig. 4
Fig. 4

Axial cross sections of the 3-D IPSF at different depths in the 2-p bleaching polymer. The objective is an oil-immersion objective with a numerical aperture of 0.75.

Fig. 5
Fig. 5

Axial cross sections of the 3-D IPSF at different depths in the 2-p bleaching polymer. The objective is an oil-immersion objective with a numerical aperture of 1.4.

Fig. 6
Fig. 6

Axial cross sections of the 3-D IPSF at different depths in the 2-p bleaching polymer under the unbalanced (solid curve) and the balanced (dashed curve) conditions. The objective is assumed to be the same as for Fig. 1.

Fig. 7
Fig. 7

Experimental setup for recording and reading 3-D optical data in a 2-p bleaching polymer.

Fig. 8
Fig. 8

Recorded 2-p bleached lines with a separation of 10 μm along the axial direction: (a) aberration uncompensated with a dry objective with a numerical aperture of 0.75, (b) aberration uncompensated with an oil-immersion objective with a numerical aperture of 0.75, and (c) aberration compensated with a dry objective with a numerical aperture of 0.75 and a correction lens with a focal length of 300 mm.

Fig. 9
Fig. 9

Axial responses to a thick 2-p bleaching polymer in the reading process: (a) aberration uncompensated with a dry objective with a numerical aperture of 0.75, (b) aberration uncompensated with an oil-immersion objective with a numerical aperture of 0.75, and (c) aberration compensated with a dry objective with a numerical aperture of 0.75 and a correction lens with a focal length of 300 mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I r ,   z = 0 α cos   θ 1 1 / 2 sin   θ 1 τ s + τ p cos   θ 2 × J 0 krn 1 sin   θ 1 exp i Φ + ikzn 2 cos   θ 2 d θ 1 2 ,
Φ = - kd n 1 cos   θ 1 - n 2 cos   θ 2 ,
Δ V = 4 π 3 Δ r 2 Δ z ,
Φ t = B   sin 4 θ 1 / 2 ,
B = - 1.35 kd .

Metrics